Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Nanorobot przewierca się i podróżuje przez oko

Recommended Posts

Badacze z Instytutu Inteligentnych Systemów im. Maxa Plancka, we współpracy z naukowcami z Danii i Chin, stworzyli pierwszego nanorobota zdolnego do poruszania się w gęstej tkance oka. Robot o średnicy zaledwie 500 nanometrów jest pokryty nieprzywierającą powłoką i został wyposażony w wiertła, dzięki którym może przebić się przez tkankę. Jako, że wiertła mają średnicę 200-krotnie mniejszą od średnicy ludzkiego włosa, robot jest w stanie poruszać się nie uszkadzając otaczającej go tkanki.

Po raz pierwszy udało się zademonstrować robota poruszającego się w tak gęstej tkance bez jej niszczenia. Dotychczas podobne roboty mogły poruszać się w płynach biologicznych lub w systemach testowych. Twórcy urządzenia mają nadzieję, że pewnego dnia ich robot zostanie wykorzystany do precyzyjnego dostarczania leków w określone miejsce.

Dostawa leków do gęstych tkanek jest trudna, szczególnie w małej skali. Szczególnie trudne jest to w oku, ze względu na gęstość i lepkość tkanki. Nawet jeśli mamy odpowiednio małą porcję leku, to warunki panujące w oku są wyjątkowo nieprzyjazne. Badacze porównują próbę dostarczenia leku do podróży korkociągu przez gęsto upakowaną dwustronną taśmę klejącą. Osobnym wyzwaniem jest precyzyjne sterowanie robotem. W tym przypadku problem udało się rozwiązać dodając do niego magnetyczny materiał, jak na przykład żelazo, co pozwala na precyzyjne sterowanie wiertłami za pomocą pól magnetycznych.

Olbrzymie znaczenie miało tutaj zastosowanie odpowiedniej nieprzylegającej powłoki. Inspirowaliśmy się naturą. Wykorzystaliśmy ciekłą warstwę podobną do tej, jakiej używają mięsożerne rośliny, dzięki której owady zsuwają się do ich wnętrza. Ta śliska powłoka jest kluczowym elementem napędu nanorobota we wnętrzu oka. Zmniejsza ona przywieranie pomiędzy tkanką a nanorobotem, mówi główny autor badań, Zhihuang Wu.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Połączenie inhibitora kinazy leku kabozantynib oraz używanego w immunoterapii niwolumabu powoduje, że część pacjentów z nowotworami wątroby, którzy nie mogli być leczeni operacyjnie, może zostać poddana zabiegowi chirurgicznemu. Takie wnioski płyną z badań przeprowadzonych w Johns Hopkins Kimmel Cancer Center, których wyniki zostały opublikowane na lamach Nature Cancer.
      We wspomnianych badaniach wzięło udział 15 pacjentów cierpiących na pierwotnego raka wątroby (raka wątrobowokomórkowego – HCC). Żaden z nich nie mógł być poddany leczeniu chirurgicznemu, jednak po łączonej terapii kabozantynibem i niwolumabem okazało się, że u 12 z tych osób można było z powodzeniem chirurgicznie usunąć nowotwór. U 5 z tych 12 osób po podaniu leków pozostało zaledwie 10% lub mniej guza.
      Rak wątrobowokomórkowy stanowi aż 90% pierwotnych raków wątroby i jest czwartym najbardziej śmiercionośnym nowotworem na świecie. W momencie diagnozy jedynie 30% tych nowotworów nadaje się do chirurgicznego usunięcia. Dzieje się tak albo dlatego, że wątroba jest już zbyt mocno uszkodzona, albo też z powodu rozpowszechnienia się nowotworu na tkanki, z których usunięcie jest zbyt trudne.
      Pacjenci, którzy zapisali się do naszych badań, byli uznawani według obecnych kryteriów za nieuleczalnie chorych. Dlatego też fakt, iż zaobserwowaliśmy tak dobrą reakcję na leczenie jest bardzo ekscytujący, gdyż wskazuje, że strategię taką można zastosować w przypadku ciężkich nieuleczalnych przypadków, mówi główny autor badań, profesor Won Jin Ho z Wydziału Medycyny Uniwersytetu Johnsa Hopkinsa.
      Wyniki badań sugerują też, że połączenie wspomnianych leków może zmienić odsetek nawrotów choroby po chirurgii. Nawet bowiem u tych pacjentów, którzy nadawali się do zabiegu chirurgicznego i zabiegi takie się udały, odsetek nawrotu choroby może wynosić 50% lub więcej. Okazało się bowiem, że u 5 pacjentów, których guzy znacząco się zmniejszyły i u których wykonano zabieg chirurgiczny, jak dotychczas nie doszło do wznowy choroby. A od czasu zabiegu minęły 230 dni. Z kolei u czterech z siedmiu pacjentów, których guzy nie zareagowały tak dobrze na leczenie kabozantynibem i niwolumabem, choroba zaczęła postępować pomiędzy 56. a 155. dniem od zakończenia leczenia.
      Oba leki już wcześniej były używane, razem i osobno, w terapii HCC. Jednak autorzy obecnych badań prowadzili je właśnie pod kątem sprawdzenia, czy terapia spowoduje, że większy odsetek pacjentów będzie nadawał się do przeprowadzenia leczenia chirurgicznego.
      W czasie prowadzonych badań naukowcy szczegółowo przyglądali się reakcji układu odpornościowego, badali mikrośrodowisko guza, wykonywali biopsje, by dokładnie wiedzieć, w jaki sposób guz reaguje na leczenie. Zastosowano m.in. obrazowanie metodą cytometrii masowej, co pozwoliło na jednoczesne obrazowanie różnych typów komórek i określenie interakcji pomiędzy nimi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ostatnie działania gigantów IT, takich jak Google, oraz koncernów farmaceutycznych sugerują, że pierwszym naprawdę przydatnym zastosowaniem komputerów kwantowych mogą stać się obliczenia związane z pracami nad nowymi lekami. Komputery kwantowe będą – przynajmniej teoretycznie – dysponowały mocą nieosiągalną dla komputerów klasycznych. Wynika to wprost z zasady ich działania.
      Najmniejszą jednostką informacji jest bit. Reprezentowany jest on przez „0” lub „1”. Jeśli wyobrazimy sobie zestaw trzech bitów, z których w każdym możemy zapisać wartość „0” lub „1” to możemy w ten sposób stworzyć 8 różnych kombinacji zer i jedynek (23). Jednak w komputerze klasycznym w danym momencie możemy zapisać tylko jedną z tych kombinacji i tylko na jednej wykonamy obliczenia.
      Jednak w komputerze kwantowym mamy nie bity, a bity kwantowe, kubity. A z praw mechaniki kwantowej wiemy, że kubit nie ma jednej ustalonej wartości. Może więc przyjmować jednocześnie obie wartości: „0” i „1”. To tzw. superpozycja. A to oznacza, że w trzech kubitach możemy w danym momencie zapisać wszystkie możliwe kombinacje zer i jedynek i wykonać na nich obliczenia. Z tego zaś wynika, że trzybitowy komputer kwantowy jest – przynajmniej w teorii – ośmiokrotnie szybszy niż trzybitowy komputer klasyczny. Jako, że obecnie w komputerach wykorzystujemy procesory 64-bitowe, łatwo obliczyć, że 64-bitowy komputer kwantowy byłby... 18 trylionów (264) razy szybszy od komputera klasycznego.
      Pozostaje tylko pytanie, po co komu tak olbrzymie moce obliczeniowe? Okazuje się, że bardzo przydałyby się one firmom farmaceutycznym. I firmy te najwyraźniej dobrze o tym wiedzą. Świadczą o tym ich ostatnie działania.
      W styczniu największa prywatna firma farmaceutyczna Boehringer Ingelheim ogłosiła, że rozpoczęła współpracę z Google'em nad wykorzystaniem komputerów kwantowych w pracach badawczo-rozwojowych. W tym samym miesiącu firma Roche, największy koncern farmaceutyczny na świecie, poinformował, że od pewnego czasu współpracuje już z Cambridge Quantum Computing nad opracowaniem kwantowych algorytmów służących wstępnym badaniom nad lekami.
      Obecnie do tego typu badań wykorzystuje się konwencjonalne wysoko wydajne systemy komputerowe (HPC), takie jak superkomputery. Górną granicą możliwości współczesnych HPC  są precyzyjne obliczenia dotyczące molekuł o złożoności podobne do złożoności molekuły kofeiny, mówi Chad Edwards, dyrektor w Cambridge Quantum Computing. Molekuła kofeiny składa się z 24 atomów. W farmacji mamy do czynienia ze znacznie większymi molekułami, proteinami składającymi się z tysięcy atomów. Jeśli chcemy zrozumieć, jak funkcjonują systemy działające według zasad mechaniki kwantowej, a tak właśnie działa chemia, to potrzebujemy maszyn, które w pracy wykorzystują mechanikę kwantową, dodaje Edwards.
      Cambridge Quantum Computing nie zajmuje się tworzeniem komputerów kwantowych. Pracuje nad kwantowymi algorytmami. Jesteśmy łącznikiem pomiędzy takimi korporacjami jak Roche, które chcą wykorzystywać komputery kwantowe, ale nie wiedzą, jak dopasować je do swoich potrzeb, oraz firmami jak IBM, Honeywell, Microsoft czy Google, które nie do końca wiedzą, jak zaimplementować komputery kwantowe do potrzeb różnych firm. Współpracujemy z 5 z 10 największych firm farmaceutycznych, wyjaśnia Edwards.
      Bardzo ważnym obszarem prac Cambridge Quantum Computing jest chemia kwantowa. Specjaliści pomagają rozwiązać takie problemy jak znalezieniem molekuł, które najmocniej będą wiązały się z danymi białkami, określenie struktury krystalicznej różnych molekuł, obliczanie stanów, jakie mogą przyjmować różne molekuły w zależności od energii, jaką mają do dyspozycji, sposobu ewolucji molekuł, ich reakcji na światło czy też metod metabolizowania różnych związków przez organizmy żywe.
      Na razie dysponujemy jednak bardzo prymitywnymi komputerami kwantowymi. Są one w stanie przeprowadzać obliczenia dla molekuł składających się z 5–10 atomów, tymczasem minimum, czego potrzebują firmy farmaceutyczne to praca z molekułami, w skład których wchodzi 30–40 atomów. Dlatego też obecnie przeprowadzane są obliczenia dla fragmentów molekuł, a następnie stosuje się specjalne metody obliczeniowe, by stwierdzić, jak te fragmenty będą zachowywały się razem.
      Edwards mówi, że w przyszłości komputery kwantowe będą szybsze od konwencjonalnych, jednak tym, co jest najważniejsze, jest dokładność. Maszyny kwantowe będą dokonywały znacznie bardziej dokładnych obliczeń.
      O tym, jak wielkie nadzieje pokładane są w komputerach kwantowych może świadczyć fakt, że główne koncerny farmaceutyczne powołały do życia konsorcjum o nazwie QuPharm, którego zadaniem jest przyspieszenie rozwoju informatyki kwantowej na potrzeby produkcji leków. QuPharm współpracuje z Quantum Economic Development Consortium (QED-C), powołanym po to, by pomóc w rozwoju komercyjnych aplikacji z dziedziny informatyki kwantowej na potrzeby nauk ścisłych i inżynierii. Współpracuje też z Pistoia Alliance, którego celem jest przyspieszenie innowacyjności w naukach biologicznych.
      Widzimy zainteresowanie długoterminowymi badaniami nad informatyką kwantową. Firmy te przeznaczają znaczące środki rozwój obliczeń kwantowych, zwykle zapewniają finansowanie w dwu-, trzyletniej perspektywie. To znacznie bardziej zaawansowane działania niż dotychczasowe planowanie i studia koncepcyjne. Wtedy sprawdzali, czy informatyka kwantowa może się do czegoś przydać, teraz rozpoczęli długofalowe inwestycje. To jest właśnie to, czego ta technologia potrzebuje, dodaje Edwards.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Europejska Agencja Leków (EMA) poinformowała, że podczas grudniowego cyberataku przestępcy uzyskali dostęp do informacji nt. leków i szczepionek przeciwko COVID-19. Teraz dane dotyczące szczepionki Pfizera zostały przez nich udostępnione w internecie
      W trakcie prowadzonego śledztwa ws. ataku na EMA stwierdzono, że napastnicy nielegalnie zyskali dostęp do należących do stron trzecich dokumentów związanych z lekami i szczepionkami przeciwko COVID-19. Informacje te wyciekły do internetu. Organy ścigania podjęły odpowiednie działania, oświadczyli przedstawiciele EMA.
      To nie pierwszy raz, gdy cyberprzestępcy biorą na cel firmy i organizacje związane z rozwojem i dystrybucją szczepionek przeciwko COVID-19. Już w maju ubiegłego roku brytyjskie Narodowe Centrum Cyberbezpieczeństwa poinformowało, że brytyjskie uniwersytety i instytucje naukowe znalazły się na celowniku cyberprzestępców, a celem ataków jest zdobycie informacji dotyczących badań nad koronawirusem. Wspomniane grupy przestępce były prawdopodobnie powiązane z rządami Rosji, Iranu i Chin. Z kolei w listopadzie Microsoft poinformował, że powiązana z Moskwą grupa Fancy Bear oraz północnokoreańskie grupy Lazarus i Cerium zaatakowały siedem firm farmaceutycznych pracujących nad szczepionkami.
      Atak na EMA nie zakłócił działania samej Agencji, nie wpłynął też na dystrybucję szczepionek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Żadna z czterech terapii testowanych w ramach pilotowanego przez WHO wielkiego międzynarodowego badania leków przeciwko COVID-19 nie okazała się skuteczna. Zawiódł też remdesivir, z którym wiązano największe nadzieje. Po testach przeprowadzonych na 11 000 pacjentów w 400 szpitalach stwierdzono, że testowane leki nie wydłużają życia chorych.
      To rozczarowujące, że stosowanie żadnego z czterech leków nie przyniosło skutku w postaci zmniejszonej śmiertelności. Jednak pokazuje to, jak bardzo potrzebujemy szeroko zakrojonych testów, mówi Jeremy Farrar, dyrektor Wellcome Trust. Chcielibyśmy, by któryś z leków działał. Jednak lepiej jest wiedzieć, czy lek w ogóle działa, niż niczego nie wiedzieć i nadal go stosować, dodaje główny naukowiec WHO Soumya Swaminathan.
      O rozpoczęciu projektu Solidarity, w ramach którego były prowadzone testy, informowaliśmy pod koniec marca. W projekcie wykorzystano już istniejące terapie stosowane w walce z innymi chorobami. Były to remdesivir, połączenie chlorochiny i hydroksycholochiny, kaltera oraz połączenie ritonaviru, lopinaviru i interferonu beta. Już w czerwcu bieżącego roku WHO zaprzestało testowania hydroksychlorochiny i kombinacji ritonaviru/lopinaviru, gdyż duże badania prowadzone w Wielkiej Brytanii wykazały, że są one nieskuteczne.
      Z czasem okazało się, że pozostałe w teście Solidarity specyfiki również nie przedłużają życia chorych na COVID-19 ani nie opóźniają momentu, w którym chorzy potrzebują podawania tlenu.
      Największe nadzieje wiązano z remdesivirem. Już wcześniej amerykańskie badania przeprowadzone na 1000 pacjentach sugerowały, że osoby otrzymujące remdesivir szybciej zdrowieją, chociaż nie zanotowano zmniejszonej śmiertelności. Dlatego też w maju amerykańska Agencja ds. Żywności i Leków (FDA) w trybie nadzwyczajnym dopuściła remdesivir do leczenia COVID-19.
      Badania prowadzone w ramach Solidarity wykazały, że remdesivir nie pomaga w ciężkich przypadkach. Spośród 2743 hospitalizowanych osób, które otrzymały ten środek, zmarło 11%, podczas gdy śmiertelność w grupie kontrolnej wyniosła 11,2%.
      Różnica jest na tyle niewielka, że mogła powstać przypadkiem. Analiza innych testów wykazała, że różnica w odsetku zgonów wśród osób przyjmujących i nie przyjmujących remdesiviru, jest nieistotna statystycznie.
      Producent remdesiviru – Gilead Sciences – uważa, że projekt Solidarity był niewłaściwie przeprowadzony, przez co nie jest jasne, czy z tych badań można wyciągnąć jakieś jednoznaczne wnioski. Co ciekawe, jak informuje WHO, Gilead otrzymał informację o wynikach Solidarity 28 września, a 8 października, zanim wyniki testu zostały upublicznione, firma podpisała z Komisją Europejską wartą 1 miliard USD umowę na dostawy remdesiviru.
      Najbardziej jednak rozczarował interferon beta. Odsetek zgonów wśród osób, które go otrzymały – czy to osobno czy w połączeniu z lopinavirem i ritonavirem – wyniósł 11,9% w porównaniu do 10,5% w grupie konstolnej. Już wcześniejsze badania sugerowały, że interferon beta pomaga, jeśli zostanie poddany wcześniej, a nie u osób hospitalizowanych. Zatem skuteczność interferonu beta na wczesnych etapach choroby pozostaje kwestią otwartą.
      Leczenie późnego stadium COVID-19 jest bardzo trudne. W stadium tym mamy duży stan zapalny i wiele skrzepów. Prawdopodobnie dlatego testowane leki okazały się nieskuteczne, mówi wirolog Benjamin tenOever z Icahn School of Medicine at Mount Sinai.
      Program Solidarity jest kontynuowany. Każdego miesiąca zapisywanych jest około 2000 nowych pacjentów. W tej chwili kontynuowane są badania nad remdesivirem, które mają dać lepszy obraz kliniczny tego środka. Do testu dodawane będą też nowe leki. Pacjentom właśnie rozpoczęto podawanie acalabrunitibu, leku przeciwnowotworowego blokującego enzym, który odgrywa ważną rolę w ludzkim układzie odpornościowym. Specjaliści mają nadzieję, że wkrótce będą mogli rozpocząć testy przeciwciał monoklonalnych, które mogą być bardziej skuteczne niż leki opracowane z myślą o innych chorobach. Próba znalezienia skutecznego leku wśród tych, już zatwierdzonych do leczenia innych chorób nie jest optymalną strategią, ale prawdopodobnie najlepszą w obecnych okolicznościach, dodaje tenOever.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jeśli oczy są zwierciadłem duszy, to dzięki przeziernym rogówkom możemy w głąb tej duszy zajrzeć. A dzięki pracy naukowców z IChF PAN możemy zajrzeć w głąb samej rogówki. I to bez jej dotykania! Wszystko dzięki wprowadzeniu innowacyjnej metody holograficznej tomografii optycznej.
      Naszym pomysłem było popsucie spójnej wiązki laserowej oświetlającej rogówkę, dzięki czemu mogliśmy znacząco wydłużyć czas ekspozycji, nie narażając położonej głębiej, delikatnej siatkówki. Jednocześnie pozwala nam to na zachowanie wysokiej wartości mocy światła, która pozwala na zobaczenie bardzo słabego rozproszenia wstecznego od rogówki – wyjaśnia prof. Maciej Wojtkowski z Zakładu Chemii Fizycznej Układów Biologicznych IChF PAN. Dodatkowo objętościowy charakter zbieranych danych pozwolił na optyczne "spłaszczenie" krzywizny rogówki i uzyskanie wyjątkowo ostrych obrazów wszystkich tworzących ją warstw w całym przekroju. To niełatwa sztuka, bo przejrzystość rogówki, choć pozwala na zaglądanie do wnętrza oka, wcale nie ułatwia badania rogówki jako takiej.
      Dawne metody wymagały kontaktu przyrządu pomiarowego z okiem, a co za tym idzie - znieczulenia gałki, a sam pomiar był długotrwały. Ale nawet i ten nowsze, wykorzystujące tomografię optyczną OCT, mają ograniczenia wynikające z nie dość szybkiego pobierania obrazów, co przy badaniu nieznieczulonego oka sprawia, że uzyskany obraz jest nieostry ze względu na mikroruchy gałki ocznej.
      Przełom przyszedł wraz z superszybkimi kamerami rejestrującymi dziesiątki tysięcy klatek na sekundę, dzięki którym można było błyskawicznie rejestrować obrazy. Problemem była rozdzielczość i artefakty wynikające m.in. z tego, że rogówka jest zakrzywiona i omiatająca ją laserowa wiązka układa się w każdej części nieco inaczej. I tu wkraczają naukowcy z IChF PAN. Ich metoda, znana jako holograficzna tomografia OCT, pozwala na uchwycenie rogówki w ułamku sekundy i zarejestrowanie całej jej głębi w niezwykle wysokiej, niespotykanej dotąd rozdzielczości. Pacjent nie zdąży nawet mrugnąć, a jego rogówka już jest zobrazowana i to z dokładnością pozwalającą oglądać nawet pojedyncze komórki. A gdyby nawet mrugnął, maszyna, a raczej komputer, skompensuje ten ruch, wciąż dając ostry obraz. Do tego nasz aparat nie ma ruchomych części, a dzięki modulacji fazy wiązki laserowej możemy wykorzystywać większe moce bez szkody dla głębiej położonych tkanek oka – wyjaśnia prof. Wojtkowski.
      Metoda opracowana przez naukowców z Międzynarodowego Centrum Badań Oka w IChF PAN ma szansę zrewolucjonizować diagnostykę chorób oka, nie tylko rogówki, dając lekarzom narzędzie pozwalające badać pacjentów szybko i bezboleśnie. Dzięki temu, że uwidacznia także to, co niewidoczne w zwykłej lampie szczelinowej, a jest równie bezinwazyjna, pacjenci zyskają komfort, a okuliści nieporównanie więcej informacji.
      Artykuł naukowców ukazał się w piśmie Biomedical Optics Express.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...