Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Tlenu na Marsie wystarczy, by podtrzymać życie

Recommended Posts

Solanka znajdująca się tuż pod powierzchnią Marsa może zawierać na tyle dużo tlenu, by umożliwić rozwój życia takiego, jakie przed miliardami lat pojawiło się na Ziemi. W niektórych miejscach tlenu może być na tyle dużo, by istniały tam prymitywne wielokomórkowce, jak na przykład gąbki.

Odkryliśmy, że marsjańskie solanki – wody o wysokiej zawartości soli – mogą zawierać na tyle dużo tlenu, by mikroorganizmy mogły nim oddychać, mówi Vlada Stamenkovic, fizyk teoretyczny z Jet Propulsion Laboratory. To rewolucjonizuje nasze rozumienie potencjalnego występowania życia na Marsie, teraz i w przeszłości, dodał uczony.

Dotychczas uważano, że na Marsie jest zbyt mało tlenu, by podtrzymać nawet życie mikroorganizmów. Nigdy nie sądziliśmy, że tlen mógłby odgrywać jakąś rolę dla życia na Marsie, gdyż jest go niezwykle mało w jego atmosferze, około 0,14 procenta, dodaje uczony.

Brak tlenu nie wyklucza istnienia życia, gdyż nawet na Ziemi istnieją mikroorganizmy, które go nie potrzebują. Dlatego właśnie, gdy myśleliśmy o życiu na Marsie, skupialiśmy się na potencjalnym życiu anaerobowym, mówi Stamenkovic.

Nowe badania rozpoczęto po tym, gdy Curiosity odkrył na Marsie tlenki manganu. To związki chemiczne powstające wyłącznie w obecności dużych ilości tlenu. Okazało się także, że na Czerwonej Planecie istnieje solanka. Duża zawartość soli zapobiega zamarzaniu wody. Pozostaje ona płynna, dzięki czemu może się w niej rozpuszczać tlen. Mimo niskich temperatur powstają więc warunki przyjazne dla mikroorganizmów.

W zależności od regionu, pory roku i pory doby temperatury na Czerwonej Planecie wahają się od -195 do -20 stopni Celsjusza. Grupa Stamenkovica stworzyła pierwszy model opisujący, jak tlen rozpuszcza się w słonych wodach w temperaturach poniżej punktu zamarzania. Drugi ze stworzonych modeli był modelem klimatycznym, który opisywał klimat na Marsie w ciągu ostatnich 20 milionów lat i na kolejne 10 milionów lat.

Dzięki połączeniu obu modeli naukowcy byli w stanie określić, w których miejscach Marsa z największym prawdopodobieństwem występują solanki pełne tlenu. To pozwoli zaplanować przyszłe misje. Koncentracja tlenu na Marsie jest o setki razy większa niż minimum potrzebne do życia mikroorganizmom oddychającym tlenem, stwierdzili autorzy artykułu opublikowanego w Nature Communications. Nasze badania nie przesądzają, że życie na Marsie istnieje. Pokazują, że jeśli rozważamy możliwość istnienia życia na marsie, to powinniśmy brać też pod uwagę potencjał tlenu rozpuszczonego w solankach, dodaje Stamenkovic.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Myślę że jesteśmy blisko odnalezienia bakteryjnych form życia poza Ziemią. I co mnie najbardziej "jara" to ciekawość czy będą DNA czy inne :)

Stawiam na DNA (RNA i wariacje). Stawiam na nasze ziemskie DNA (RNA).

Jeśli w kosmosie mamy do czynienia z idealnie dobranymi parametrami żeby mogło powstać życie, to produkt tych parametrów moim zdaniem może być tylko jeden. Życie oparte na DNA.
Oczywiście ewolucja w zależności od środowiska te wariacje DNA może w różny sposób ukształtować: od mrówki po tytanozaura.

Edited by thikim

Share this post


Link to post
Share on other sites

Może być też tak, że nasze środowisko to jest te trudniejsze, i gdzie indziej życie może mieć łatwiej.

Share this post


Link to post
Share on other sites

Raczej poza. Zasugerowałem się:

On 11/10/2018 at 6:51 AM, thikim said:

Oczywiście ewolucja w zależności od środowiska te wariacje DNA może w różny sposób ukształtować: od mrówki po tytanozaura.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Kontynentalna skorupa ziemska mogła pojawić się nawet 500 milionów lat wcześniej niż dotychczas przypuszczano. Określenie daty jej powstania jest o tyle istotne, że lepiej pomaga zrozumieć warunki, w jakich na naszej planecie pojawiło się życie.
      Wietrzenie skorupy kontynentalnej dostarcza do oceanów wielu składników odżywczych, które mogły pomóc w utrzymaniu i rozwoju prymitywnego życia. Dlatego tak ważnym jest odpowiedź na pytanie, kiedy pojawiły się kontynenty. Aby na nie odpowiedzieć Desiree Roerdink z Uniwersytetu w Bergen i jej zespół zbadali próbki skał z 6 miejsc w Australii, RPA i Indiach.
      W próbkach znajdował się baryt, minerał z grupy siarczanów, który może powstawać w pobliżu kominów hydrotermalnych. Baryt się nie zmienia. Jego skład chemiczny nosi ślady środowiska, w jakim powstawał, stwierdziła Roerdink prezentując wyniki swoich badań w czasie spotkania Europejskiej Unii Nauk Geologicznych.
      Naukowcy wykorzystali stosunek izotopów strontu, by obliczyć, kiedy rozpoczęło się wietrzenie badanych przez nich skał. Na tej podstawie stwierdzili, że po raz pierwszy proces taki miał miejsce około 3,7 miliarda lat temu.
      Ziemia powstała przed około 4,5 miliardami lat. Z czasem jej zewnętrzna część ostygła na tyle, że powstała sztywna skorupa pokryta globalnym oceanem. Przed około 4 miliardami lat rozpoczął się archaik, epoka geologiczna, w której pojawiło się życie. Mamy silne dowody na to, że co najmniej 3,5 miliarda lat temu na Ziemi istniały mikroorganizmy. Dokładnie jednak nie wiemy, kiedy życie się pojawiło.
      Aaron Satkoski z University of Texas mówi, że badania grupy Roerdink pokazują, iż życie mogło pojawić się najpierw na lądzie. Badania te pozwalają nam stwierdzić, kiedy istniały lądy, które mogły pomóc w powstaniu życia, stwierdza uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance dokonał kolejnego ważnego kroku w kierunku załogowej eksploracji Marsa. Znajdujący się na nim instrument MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment) wykorzystał bogatą w węgiel atmosferę Marsa do wytworzenia tlenu. Udany eksperyment przeprowadzono przed dwoma dniami, 20 kwietnia. Bez możliwości produkcji i przechowywania tleny na Marsie trudno będzie myśleć o załogowej misji na Czerwoną Planetę.
      To krytyczny krok w kierunku zamiany dwutlenku węgla na tlen na Marsie. MOXIE ma jeszcze sporo do roboty, ale uzyskane właśnie wyniki są niezwykle obiecujące, gdyż pewnego dnia chcemy wysłać ludzi na Marsa. Tlen to nie tylko coś, czym oddychamy. Napędy rakietowe zależą od tlenu, a przyszłe misje załogowe będą uzależnione od produkcji na Marsie paliwa, które pozwoli astronautom wrócić do domu, mówi Jim Reuter dyrektor w Space Technology Mission Directorate (STMD).
      Inżynierowie obliczają, że do przywiezienia 4 astronautów z Marsa na Ziemię rakieta będzie potrzebowała 7 ton paliwa i 25 ton tlenu. To znacznie więcej, niż potrzeba ludziom do oddychania. Ci sami astronauci podczas rocznego pobytu na Marsie zużyją może 1 tonę tlenu, mówi Michael Hecht z Massachusetts Institute of Technology.
      Przewożenie 25 ton tlenu z Ziemi na Marsa byłoby bardzo trudnym i kosztownym przedsięwzięciem. Znacznie łatwiej będzie przetransportować większą wersję MOXIE, 1-tonowe urządzenie, które na miejscu wyprodukuje tlen potrzebny do powrotu.
      Atmosfera Marsa w 96% składa się z dwutlenku węgla. MOXIE oddziela atomy tlenu od molekuł dwutlenku węgla, uwalniając do atmosfery Marsa tlenek węgla. Konwersja odbywa się w temperaturze około 800 stopni Celsjusza, dlatego MOXIE jest zbudowany ze specjalnych materiałów, w tym wydrukowanych w 3D stopów aluminium, w których odbywa się ogrzewanie i chłodzenie gazów oraz aerożelu działającego jak izolacja. Z zewnątrz MOXIE pokryte jest cienką warstwą złota, które zatrzymuje promieniowanie podczerwone wewnątrz urządzenia, chroniąc w ten sposób inne elementy łazika Perseverance.
      Podczas pierwszego testu MOXIE wytworzył około 5 gramów tlenu, co wystarczyłoby człowiekowi na około 10 minut oddychania. Urządzenie jest w stanie wytworzyć do 10 gramów tlenu na godzinę.
      Przeprowadzony właśnie test miał pokazać, czy urządzenie bez szwanku przetrwało start, podróż i lądowanie na Marsie. NASA chce jeszcze co najmniej 9-krotnie prowadzić testy MOXIE. To nie jest po prostu pierwsze urządzenie, które wyprodukowało tlen na innej planecie. To pierwsza technologia tego typu, która ma wspomóc przyszłe misje wykorzystując lokalnie występujące zasoby, stwierdza Trudy Kortes odpowiedzialna w STMD za demonstracje technologii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Data pierwszego w historii lotu na Marsie została przesunięta na nie wcześniej niż 14 kwietnia. NASA poinformowała, że podczas testów komputera pokładowego śmigłowca Ingenuity doszło do automatycznego awaryjnego przerwania sekwencji komend. Teraz inżynierowie przeglądają i analizują dane, by zrozumieć, co się stało.
      Do zdarzenia doszło w czasie testu rotorów. Miały one zostać uruchomione i działać z dużą prędkością. Gdy jednak próbowano zmienić status komputera pokładowego z „Pre-Flight” (przed lotem) na „Flight” (lot) system bezpieczeństwa przerwał wykonywanie komend. System ten nadzoruje śmigłowiec i informuje jego systemy o wszelkich możliwych zakłóceniach. Nie dopuszcza on do dalszego wykonywania komend, jeśli zaobserwuje jakieś problemy.
      Inżynierowie nie wiedzą na razie, co się stało. Wiadomo, że śmigłowiec jest bezpieczny, jest w dobrym stanie i przesłał na Ziemię wszystkie dane telemetryczne. Gdy specjaliści dowiedzą się, co było przyczyną zadziałania systemu bezpieczeństwa, będą mogli wprowadzić poprawki i ponownie przystąpić do planowanego testu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zanim Mars stał się tak suchy, jak obecnie, panujące na nim warunki kilkukrotnie zmieniały się między wilgotnymi a suchymi. Takie wnioski płyną z analizy zdjęć o wysokiej rozdzielczości wykonanych przez teleskop znajdujących się na pokładzie łazika Curiosity. Obrazy te pozwoliły na zapoznanie się ze strukturą Mount Sharp, góry o 6-kilometrowej wysokości położonej w centrum Krateru Gale.
      Po raz pierwszy dysponujemy takimi szczegółami wypiętrzenia na Marsie. Pozwala nam to obserwować bardzo stare skały, mówi William Rapin z Instytutu Badań Astrofizycznych i Planetarnych z Francji, który wraz z kolegami z USA analizował obrazy. Skały te pochodzą sprzed ponad 3,5 miliarda lat, z krytycznego okresu, gdy na Marsie wciąż znajdowała się woda, ale już zachodziły na nim olbrzymie globalne zmiany klimatyczne.
      Warstwy położone u podnóża Mount Sharp noszą cechy warstw, które formowały się w jeziorze. Jednak nad nimi widać warstwy, których wygląd sugeruje, iż powstały w środowisku pustynnym. Jeszcze wyżej położone warstwy wskazują na istnienie wilgotnego klimatu w czasie ich formowania się. Nad nimi zaś naukowcy zauważyli warstwy pochodzące z czasów, gdy na Marsie było sucho.
      Należałoby się spodziewać, że Mars wysychał stopniowo w miarę przesuwania się w czasie. Tymczasem widać, że następował powrót do bardziej wilgotnych czasów. To bardzo ekscytujące i interesujące odkrycie, mówi Christian Schroeder z University of Stirling.
      Łazik Curiosity, który wylądował na Marsie w 2012 roku, ma wjechać na Mount Sharp i ją badać. Być może uda się dzięki temu zbadać, co powodowało tego typu zmiany klimatu na Marsie.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...