Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Biodegradowalny implant wspomaga regenerację nerwów

Recommended Posts

Inżynierowie materiałowi z Northwestern University i neurochirurdzy z Washington University stworzyli pierwsze biodegradowalne bezprzewodowe urządzenie, które przyspiesza regenerację nerwów. Implant dostarcza regularnych impulsów elektrycznych do nerwów obwodowych u szczurów. Zwierzęta wcześniej poddano operacji naprawiającej nerwy, podczas której wszczepiono im też implant.

Jego zadaniem jest przyspieszenie odbudowy nerwów i poprawienie wyników leczenia, dzięki czemu mięśnie zwierząt są później silniejsze i lepiej kontrolowane. Implant, rozmiarów małej monety i grubości kartki paieru, pracuje przez około dwa tygodnie. Później jest wchłaniany przez organizm.

Naukowcy uważają, że w przyszłości tego typu urządzenia będą uzupełniały lub zastąpią terapie z wykorzystaniem leków. Tego typu technologia, nazywana „medycyną bioelektryczną”, zapewnia precyzyjne leczenie dokładnie w miejscu, w którym jest ono potrzebne. Zmniejsza więc ryzyko i skutki uboczne związane ze stosowaniem tradycyjnych stałych implantów.

Te systemy zapewniają aktywne funkcje terapeutyczne w ściśle zaprogramowany precyzyjny sposób, a później bez śladu rozpuszczają się w organizmie. To pozwala nam myśleć o leczeniu wykraczającym poza leki i chemię, mówi pionier takich technologii i współautor najnowszych badań profesor John A. Rogers.

Dotychczas biodegradowalny implant nie był testowany na ludziach, jednak wyniki badań na zwierzętach dają nadzieję, że sprawdzi się on i na Homo sapiens. Nowa technika może być niezwykle pomocna. Obecnie podczas operacji neurochirurgicznych stymuluje się nerwy prądem, gdyż wiadomo, że przyspiesza to regenerację. Jednak gdy operacja się kończy, kończy się też możliwość stymulacji. Wiemy, że stymulacja elektryczna w czasie zabiegu pomaga. Jednak po zabiegu nie mamy obecnie możliwości by ją nadal prowadzić. Dzięki temu urządzeniu wykazaliśmy, że stymulacja elektryczna przeprowadzona wedle wcześniejszego planu dodatkowo poprawia regenerację nerwów, mówi profesor neurochirurgii i ortopedii Wilson Ray.

Prace nad urządzeniem trwały przez 8 lat. Rogers i jego zespół stworzyli w tym czasie odpowiednie materiały, zaprojektowali urządzenie i opracowali techniki jego produkcji. Gdy Ray i jego koledzy z Washington University rozpoczęli prace nad ciągłym stymulowaniem uszkodzonych nerwów, mieli do dyspozycji projekt Rogersa. Obie grupy wspólnie wyprodukowały odpowiednie urządzenie i rozpoczęły testy.

Implant jest zasilany i kontrolowany przez nadajnik znajdujący się poza organizmem. Działa on podobnie jak mata do bezprzewodowego ładowania smartfonu. W ramach testów prowadzonych na szczurach z uszkodzonymi nerwami kulszowymi zwierzęta poddawano elektrostymulacji godzinę dziennie przez 1, 3 lub 6 dni. Grupa kontrolna nie była stymulowana. Następnie naukowcy przez kolejne 10 tygodni śledzili postępy w regeneracji nerwów.

Okazało się, że w każdym przypadku elektrostymulacja dawała lepsze wyniki niż jej brak. Dzięki niej szczury odzyskiwały masę i siłę mięśniową. Im więcej elektrostymulacji, tym szybsza była regeneracja nerwów. Nie zauważono żadnych skutków ubocznych ani od elektrostymulacji, ani od wchłonięcia implantu przez organizm.

Zanim nie rozpoczęliśmy badań nie byliśmy pewni, czy więcej elektrostymulacji da lepsze wyniki. Teraz wiemy,że im więcej tym lepiej. Pracujemy więc nad określeniem idealnego przedziału czasowego, w którym należy stymulować nerwy. Czy jeśli zamiast 6 dni stymulowalibyśmy je przez 12 to osiągnęlibyśmy lepsze wyniki? Może. Właśnie nad tym teraz pracujemy, mówi Ray.

Uczeni informują, że możliwe jest też kontrolowanie czasu, w jakim implant zostanie wchłonięty przez organizm. Jest to bowiem uzależnione od wykorzystanych materiałów i grubości urządzenia. Nowe wersje implantu mogą pozostawać w organizmie przez wiele tygodni. Zbudowaliśmy znikające urządzenie. Moja grupa przez niemal 10 lat myślała o stworzeniu biodegradowalnego urządzenia elektrycznego. To było olbrzymie wyzwanie na polu inżynierii materiałowej. Jesteśmy niezwykle podekscytowani, gdyż teraz mamy to, nad czym pracowaliśmy – odpowiednie materiały, urządzenia, proces produkcyjny i całą inżynieryjną koncepcję, cieszy się Rogers.

Badania wykazały też, że implant znajdzie szersze zastosowanie niż jedynie dostawca impulsów elektrycznych wspomagających regenerację obwodowego układu nerwowego. Okazało się bowiem, że może pracować też jako tymczasowy rozrusznik serca oraz interfejs dla rdzenia kręgowego.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W Uniwersyteckim Szpitalu Klinicznym w Opolu przeprowadzono endoskopową separację nowotworu kręgosłupa z wykorzystaniem nowoczesnych implantów. To pierwszy taki zabieg w Polsce - podkreśla dr hab. n. med. Dariusz Łątka, kierownik Kliniki i Oddziału Neurochirurgii.
      Naszym zadaniem podczas tej operacji było usunięcie części nowotworu kręgosłupa, będącej w bezpośrednim kontakcie z rdzeniem kręgowym, żeby umożliwić kolejny, właściwy, etap radykalnego leczenia onkologicznego przez stereoradioterapię - wyjaśnia.
      Zabieg przeprowadzono u 50-letniego pacjenta ze zdiagnozowanym nowotworem w piersiowym odcinku kręgosłupa (wywołuje on postępujący niedowład kończyn dolnych). Kompleksowa terapia jest realizowana we współpracy z onkologiem - lek. med. Kornelem Pawlakiem z Opolskiego Centrum Onkologii.
      Dzięki separacji radioterapeuta będzie mógł tak zdefiniować obszary chronione, by przy napromienianiu nie doszło do uszkodzenia rdzenia kręgowego.
      Takie zabiegi neurochirurgiczne wykonywane są w kilku ośrodkach zajmujących się chirurgią onkologiczną kręgosłupa. Innowacyjność naszego rozwiązania polega - po pierwsze - na zastosowaniu do tego techniki endoskopowej, wykorzystywanej dotychczas w neurochirurgii do leczenia zmian zwyrodnieniowych kręgosłupa. Separacja nowotworu przez endoskop, czyli jakby przez "dziurkę od klucza", pozwoli na dużo szybszą rekonwalescencję pacjenta przed zasadniczą częścią leczenia, czyli radioterapią. Zakładamy, że powinien być gotowy do leczenia onkologicznego już po kilku dniach.
      Drugą nowością było, jak podkreślono w komunikacie prasowym szpitala, zastosowanie do stabilizacji kręgosłupa ultranowoczesnych implantów karbonowych. Nie zasłonią one pola napromieniania, jak działoby się przy implantach tytanowych - mówi Łątka.
      Zespół chirurgiczny tworzony przez dr. n. med. Kajetana Łątkę i lek. med. Tomasza Krzeszowca nadzorował dr hab. n. med. Dariusz Łątka. Instrumentariuszkami były Aleksandra Babicz, Karolina Tybeńska i Violetta Szopa; znieczulenie prowadziła Agnieszka Wróbel w asyście Doroty Pietrek i Beaty Lechkun.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Japońscy naukowcy odkryli, że dwa gatunki ślimaków morskich - Elysia cf. marginata i Elysia atroviridis - potrafią odrzucić i zregenerować całe ciało, wraz z sercem i innymi narządami wewnętrznymi. Badacze sugerują, że zwierzęta te są w stanie przetrwać tak skrajną formę autotomii dzięki fotosyntezie przeprowadzanej przez chloroplasty przejęte od zjadanych glonów.
      Byliśmy zaskoczeni, widząc głowę poruszającą się tuż po autotomii. Myśleliśmy, że bez serca i innych ważnych narządów wkrótce obumrze, ale ku naszemu ponownemu zaskoczeniu doszło do regeneracji całego ciała - opowiada Sayaka Mitoh z Nara Women's University.
      Do odkrycia doszło przez przypadek. Sayaka Mitoh jest doktorantką w laboratorium Yoichi Yusy. Co ważne, w laboratorium tym hoduje się ślimaki. Pewnego dnia w 2018 r. Mitoh zobaczyła głowę Elysia cf. marginata przemieszczającą się bez reszty ciała.
      W artykule z pisma Current Biology Mitoh i Yusa ujawnili, że oddzielona od serca i ciała głowa przemieszczała się samodzielnie tuż pod autotomii. Na przestrzeni dni rana z tyłu głowy się zamykała. W ciągu paru godzin głowa stosunkowo młodych ślimaków zaczynała żerować na glonach. Regeneracja serca zachodziła w ciągu tygodnia. Po 3 tygodniach regeneracja była zakończona. Jeden z osobników zrobił coś takiego 2-krotnie.
      Pięć z 15 wyhodowanych w laboratorium młodych Elysia cf. marginata wykonało skrajną autotomię 226-336 dni po wylęgu z jaj. Podobne zjawisko zaobserwowano u 3 z 82 E. atroviridis; spośród nich 2 osobniki zregenerowały ciała w ciągu tygodnia.
      Mitoh i Yusa nie są pewni, jak ślimaki morskie tego dokonują. Mitoh podejrzewa, że mogą za to odpowiadać komórki podobne do macierzystych. Po co ślimakom tak skrajna postać autotomii? To również nie jest jasne, ale niewykluczone, że pomaga im to w pozbyciu się wewnętrznych pasożytów, które hamują ich rozmnażanie. W ramach przyszłych badań naukowcy chcą sprawdzić, jakie wskazówki uruchamiają autotomię całego ciała i prześledzić mechanizmy leżące u podłoża opisanego zjawiska na poziomie tkankowym i komórkowym.
      Oddzielone od reszty ciała głowy starszych osobników (wyklutych z jaj 480-520 dni wcześniej) nie żerowały i obumierały w ciągu ok. 10 dni; Japończycy podejrzewają, że u bardzo starych osobników korzyści z takiej autotomii byłyby znikome, ponieważ prawdopodobnie nie mogą się one już rozmnażać. Jeśli jednak rzeczywiście chodzi o pozbycie się endopasożytów, niekiedy takie ryzyko może się opłacać. Stare osobniki i tak już długo nie pożyją, [więc jeśli zginą, nie stanie się nic niespodziewanego czy odległego w czasie], a istnieje szansa, że [jakimś cudem] uda się przeżyć i zregenerować ciało bez pasożytów.
      I w przypadku młodych, i starych osobników odrzucone ciała nie odtwarzały głowy, ale także się poruszały i reagowały na dotyk przez kilka dni, a nawet miesięcy.
      Elysia cf. marginata i E. atroviridis uzyskują chloroplasty ze zjadanych glonów; zjawisko to jest nazywane kleptoplastią. Dzięki temu ślimaki mogą wykorzystywać możliwości związane z fotosyntezą. Ta zdolność pozwala im przeżyć po autotomii wystarczająco długo, by zregenerować ciało.
      Sądzimy, że to najbardziej ekstremalna forma autotomii i regeneracji w naturze - podsumowuje Mitoh.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Interdyscyplinarny zespół naukowy z Arizona State University i Louisiana Department of Wildlife and Fisheries odkrył, że u aligatorów – podobnie jak u jaszczurek – ogon może częściowo odrosnąć. Okazało się, że młode aligatory mają możliwość odzyskania do 23 centymetrów ogona, czyli do 18% długości ciała.
      Naukowcy połączyli zaawansowane technologie obrazowania z technikami badania anatomii tkanek. Odkryli, że takie odrośnięte ogony były złożonymi strukturami z centralnym szkieletem złożonym z tkanki chrzęstnej otoczonej tkanką łączną zawierającą naczynia krwionośne i nerwy. O szczegółach badań możemy przeczytać na łamach Scientific Reports.
      Tym, co powoduje, że aligatory są takie interesujące jest – oprócz ich rozmiarów – fakt, iż odrośnięty ogon wykazuje w tej samej strukturze zarówno cechy regeneracji jak i zabliźniania się ran, mówi Cindy Xu z Arizona State University.
      Odrastanie tkanki chrzęstnej, naczynia krwionośne, nerwy i łuski widzieliśmy już podczas regeneracji ogona jaszczurek. Byliśmy jednak zaskoczeni odkryciem w miejscu mięśni szkieletowych tkanki łącznej podobnej do blizn. Potrzebna są dalsze badania porównawcze, by zrozumieć, dlaczego u różnych gadów i u różnych grup zwierząt zdolności do regeneracji są różne, dodaje uczona. Spektrum zdolności regeneracyjnych różnych gatunków jest fascynujące. Wyraźnie widać, że stworzenie nowych mięśni jest kosztowne, dodaje profesor Jeanne Wilson-Rawls z ASU.
      Aligatory, jaszczurki i ludzie należą do owodniowców. Wiemy teraz, że i jaszczurki i aligatory są zdolne do regeneracji ogona. To zaś rodzi pytanie o ewolucję tej zdolności. Przodkowie aligatorów, dinozaurów i ptaków oddzielili się od siebie około 250 milionów lat temu. Odkrycie, że aligatory są w stanie odtworzyć złożony ogon, a ptaki utraciły tę zdolność, każe nam zapytać, kiedy została ona utracona. Czy mamy np. skamieniałości dinozaurów świadczące o tym, że były one w stanie odbudować utracony ogon? Dotychczas w dostępnej literaturze nie znaleźliśmy takich informacji, mówi profesor Kenro Kusumi z ASU.
      Naukowcy mają nadzieję, że ich badania pozwolą na opracowanie terapii pomagających w leczeniu obrażeń czy chorób takich jak artretyzm. Jeśli bowiem zrozumiemy, jak różne zwierzęta naprawiają i regenerują tkanki, będziemy mogli wykorzystać tę wiedzę w medycynie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Tapiry amerykańskie (Tapirus terrestris), a właściwie ich odchody, mogą być kluczem do odtworzenia lasów deszczowych w południowo-wschodniej Amazonii, którym zagrażają fragmentacja, pożary podszytu czy ekstremalne zdarzenia klimatyczne. By przedsięwzięcie się udało, tapiry muszą jednak wesprzeć koprofagi.
      Prof. Lucas Paolucci z Instituto de Pesquisa Ambiental da Amazônia Paolucci, współautor artykułu z pisma Biotropica z marca zeszłego roku, podkreśla, że odchody tapirów są pełne nasion. Tapiry są znane jako ogrodnicy lasów. Żerują na owocach ponad 300 gatunków roślin, a później przemieszczają się po dżungli z żołądkiem pełnym nasion, w tym należących do dużych, magazynujących dwutlenek węgla drzew.
      W 2016 r. Paolucci dołączył do badaczy analizujących rolę tapirów w regeneracji siedlisk leśnych zmienionych/zniekształconych (dotkniętych zjawiskami klęskowymi). Ekipa przeprowadziła eksperyment we wschodnim Mato Grosso, gdzie w latach 2004-10 dwie powierzchnie leśne wypalano według różnych schematów: jedną palono każdego roku, a drugą co trzy lata. Trzecie poletko (kontrolne) zostawiano nietknięte.
      Naukowcy odnotowali położenie 163 kupek nawozu i porównywali je z nagraniami tapirów z kamer pułapkowych. Następnie oddzielili z odchodów nasiona, łącznie 129.204 (należały one do 24 gatunków roślin). Nagrania pokazały, że tapiry spędzały na spalonych obszarach o wiele więcej czasu niż w nietkniętym lesie. Paolucci sądzi, że prawdopodobnie korzystają ze słońca. Co więcej, T. terrestris znacznie częściej wypróżniały się na spalonym obszarze, zostawiając tam ponad 3-krotnie więcej nasion w przeliczeniu na hektar (9.822/ha vs. 2950/ha).
      Kilka miesięcy po publikacji wyników, w sierpniu zeszłego roku, w Amazonii wybuchła seria pożarów o niespotykanym nasileniu. To w jeszcze większym stopniu zmotywowało Paolucciego do zrozumienia roli tapirów w regeneracji lasów. Paolucci wiedział jednak, że tapiry nie zrobią wszystkiego same. Muszą im pomóc koprofagi, które roznoszą odchody, a przy okazji nasiona. Jak napisał Paolucci w przesłanym nam mailu, pomóc może właściwie każdy gatunek usuwający nawóz, a w konsekwencji nasiona.
      Owady zakopują małe grudki odchodów jako zapasy na później, a to jak można się domyślić, wspomaga kiełkowanie nasion.
      Na początku 2019 r. Paolucci wrócił do Amazonii, by zebrać 20 kg odchodów tapirów. Podzielił je później na 700-g kupki. Do każdej włożył koraliki z tworzywa sztucznego, które miały przypominać nasiona. Na końcu przetransportował wszystko z powrotem w teren. Po upływie doby naukowiec zebrał resztki i policzył, ile koralików zostało. Brakujące zostały zapewne rozniesione przez chrząszcze. Paolucci liczy, że wyniki jego badań zostaną opublikowane w przyszłym roku.
      Amazońscy ranczerzy są zazwyczaj zobowiązani do zachowania na swoim terenie 80% naturalnej pokrywy leśnej, jednak wiele drzew jest wycinanych nielegalnie, a nowe nasadzenia nie mają już miejsca. Tapiry mogą, wg profesora, być tanim sposobem na wspomaganie reforestacji.
      Naukowcy przypominają jednak, że liczebność populacji tapira amerykańskiego, jedynego szeroko rozpowszechnionego tapira w Amazonii, spada i obecnie gatunek jest uznawany za narażony na wyginięcie. Dzieje się tak przez utratę habitatu i polowania.
       

       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kwas ursolowy, który występuje m.in. w skórce jabłek, w żurawinie czy w ziołach, np. szałwii lekarskiej, zatrzymuje uszkodzenia i wspiera procesy naprawy w stwardnieniu rozsianym (SR). Działa więc zarówno immunomodulująco, jak i neuroregeneracyjnie.
      Badania przeprowadzone na modelu mysim oraz ex vivo pokazują, że naturalny przeciwzapalny triterpen kwas ursolowy ogranicza dalsze uszkodzenia i pomaga odbudować osłonkę mielinową.
      Chociaż dowody są na razie wstępne - dane pochodzą ze zwierzęcego modelu choroby - zachęcająco jest widzieć związek, który zarówno zatrzymuje postępy SR, jak i naprawia uszkodzenia w laboratorium - podkreśla prof. Guang-Xian Zhang z Uniwersytetu Thomasa Jeffersona. Potrzebne są kolejne badania dot. bezpieczeństwa tego związku - dodaje dr A.M. Rostami.
      Naukowcy wykorzystali oczyszczoną postać kwas ursolowego. W wielu eksperymentach analizowano przypadki myszy w fazie ostrej [...]. My zaś testowaliśmy, czy kwas ursolowy jest skuteczny w fazie chronicznej, gdy występują już przewlekłe uszkodzenia tkanki ośrodkowego układu nerwowego.
      Amerykanie wykorzystali mysi model SR, który rozwija się powoli w ciągu życia, oddając przebieg choroby u ludzi. Około 12. dnia u myszy rozpoczyna się faza ostra, gdy pojawiają się symptomy, takie jak częściowy paraliż, i gdy dostępne obecnie leki są najskuteczniejsze. Naukowcy rozpoczęli jednak terapię dopiero 60. dnia, na o wiele bardziej zaawansowanym etapie choroby, gdy w mózgu i rdzeniu rozwinęły się już przewlekłe uszkodzenia tkanek.
      Autorzy publikacji z pisma PNAS leczyli gryzonie przez 60 dni. Poprawa zaczęła być widoczna po 20 dniach terapii. Myszy, które były sparaliżowane na początku eksperymentu, odzyskały zdolność chodzenia (z pewnymi problemami).
      To nie lekarstwo, ale jeśli zobaczymy podobną reakcję u ludzi, mogłaby to być znacząca zmiana jakości życia. Najważniejsze jest odwrócenie objawów, którego przy innych terapeutykach nie widzieliśmy na tak późnym etapie choroby - podkreśla Zhang.
      Naukowcy oceniali, jak kwas ursolowy wpływa na komórki. Zaobserwowali, że hamuje limfocyty Th17, które odgrywają ważną rolę w patologicznej reakcji autoimmunologicznej w SR. Dodatkowo triterpen ten aktywuje komórki prekursorowe, by dojrzewały w wytwarzające osłonki mielinowe oligodendrocyty. Ten efekt jest najważniejszy. Oligodendrocytów jest w SR za mało, a komórki, z których powstają, są uśpione i niezdolne do dojrzewania. Kwas ursolowy pomaga je aktywować [...].
      Następnym etapem badań mają być testy bezpieczeństwa. Kwas ursolowy jest dostępny jako suplement, ale w większych dawkach może być toksyczny. Przed rozpoczęciem pierwszych testów klinicznych czeka nas jeszcze sporo badań - podsumowuje Rostami.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...