Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' rdzeń kręgowy'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. KopalniaWiedzy.pl

    Rdzeń może więcej niż sądzono

    Rdzeń kręgowy jest w stanie przetwarzać i kontrolować bardziej złożone funkcje, takie jak położenie ręki w przestrzeni. Badanie pokazuje, że co najmniej jedna ważna funkcja jest wykonywana na poziomie rdzenia. Pojawiają się [więc] nowe obszary badań i pytania o to, co jeszcze jest realizowane na poziomie rdzenia i co potencjalnie pominęliśmy w tej dziedzinie - podkreśla prof. Andrew Pruszynski z Uniwersytetu Zachodniego Ontario. Kanadyjczycy tłumaczą, że wspomniany rodzaj kontroli wymaga dopływu danych z wielu stawów, głównie z łokcia i nadgarstka. Dotąd sądzono, że są one przetwarzane i przekształcane w komendy motoryczne w korze mózgowej. Podczas testów wykorzystano robotyczne egzoszkielety z trzema stopniami swobody. Ochotników proszono o utrzymanie ręki w docelowej pozycji. Następnie robot to zaburzał, jednocześnie zginając bądź prostując łokieć i nadgarstek. Naukowcy mierzyli czas latencji (odroczenia) reakcji mięśni i sprawdzali, czy reakcje te pomogą ustawić rękę w pierwotnej pozycji. Czas latencji pozwalał stwierdzić, czy przetwarzanie zaszło w mózgu, czy w rdzeniu. Odkryliśmy, że odpowiedzi pojawiały się tak szybko, że jedynym miejscem, gdzie mogły być generowane, były obwody rdzeniowe. Stwierdziliśmy, że dla obwodów tych nie jest ważne, co się dzieje w poszczególnych stawach. Ważne jest to, gdzie ręka się znajduje w zewnętrznym świecie, stąd reakcja, która ma [skorygować odchylenia i] przywrócić stan wyjściowy - wyjaśnia dr Jeff Weiler. Ta reakcja generowana przez rdzeń jest nazywana odruchem na rozciąganie (ang. stretch reflex). Historycznie uważano, że taki odruch rdzeniowy ma prowadzić do odtworzenia pierwotnej długości mięśnia. My pokazaliśmy, że chodzi o coś o wiele bardziej skomplikowanego - kontrolę ręki w przestrzeni.   « powrót do artykułu
  2. Inżynierowie materiałowi z Northwestern University i neurochirurdzy z Washington University stworzyli pierwsze biodegradowalne bezprzewodowe urządzenie, które przyspiesza regenerację nerwów. Implant dostarcza regularnych impulsów elektrycznych do nerwów obwodowych u szczurów. Zwierzęta wcześniej poddano operacji naprawiającej nerwy, podczas której wszczepiono im też implant. Jego zadaniem jest przyspieszenie odbudowy nerwów i poprawienie wyników leczenia, dzięki czemu mięśnie zwierząt są później silniejsze i lepiej kontrolowane. Implant, rozmiarów małej monety i grubości kartki paieru, pracuje przez około dwa tygodnie. Później jest wchłaniany przez organizm. Naukowcy uważają, że w przyszłości tego typu urządzenia będą uzupełniały lub zastąpią terapie z wykorzystaniem leków. Tego typu technologia, nazywana „medycyną bioelektryczną”, zapewnia precyzyjne leczenie dokładnie w miejscu, w którym jest ono potrzebne. Zmniejsza więc ryzyko i skutki uboczne związane ze stosowaniem tradycyjnych stałych implantów. Te systemy zapewniają aktywne funkcje terapeutyczne w ściśle zaprogramowany precyzyjny sposób, a później bez śladu rozpuszczają się w organizmie. To pozwala nam myśleć o leczeniu wykraczającym poza leki i chemię, mówi pionier takich technologii i współautor najnowszych badań profesor John A. Rogers. Dotychczas biodegradowalny implant nie był testowany na ludziach, jednak wyniki badań na zwierzętach dają nadzieję, że sprawdzi się on i na Homo sapiens. Nowa technika może być niezwykle pomocna. Obecnie podczas operacji neurochirurgicznych stymuluje się nerwy prądem, gdyż wiadomo, że przyspiesza to regenerację. Jednak gdy operacja się kończy, kończy się też możliwość stymulacji. Wiemy, że stymulacja elektryczna w czasie zabiegu pomaga. Jednak po zabiegu nie mamy obecnie możliwości by ją nadal prowadzić. Dzięki temu urządzeniu wykazaliśmy, że stymulacja elektryczna przeprowadzona wedle wcześniejszego planu dodatkowo poprawia regenerację nerwów, mówi profesor neurochirurgii i ortopedii Wilson Ray. Prace nad urządzeniem trwały przez 8 lat. Rogers i jego zespół stworzyli w tym czasie odpowiednie materiały, zaprojektowali urządzenie i opracowali techniki jego produkcji. Gdy Ray i jego koledzy z Washington University rozpoczęli prace nad ciągłym stymulowaniem uszkodzonych nerwów, mieli do dyspozycji projekt Rogersa. Obie grupy wspólnie wyprodukowały odpowiednie urządzenie i rozpoczęły testy. Implant jest zasilany i kontrolowany przez nadajnik znajdujący się poza organizmem. Działa on podobnie jak mata do bezprzewodowego ładowania smartfonu. W ramach testów prowadzonych na szczurach z uszkodzonymi nerwami kulszowymi zwierzęta poddawano elektrostymulacji godzinę dziennie przez 1, 3 lub 6 dni. Grupa kontrolna nie była stymulowana. Następnie naukowcy przez kolejne 10 tygodni śledzili postępy w regeneracji nerwów. Okazało się, że w każdym przypadku elektrostymulacja dawała lepsze wyniki niż jej brak. Dzięki niej szczury odzyskiwały masę i siłę mięśniową. Im więcej elektrostymulacji, tym szybsza była regeneracja nerwów. Nie zauważono żadnych skutków ubocznych ani od elektrostymulacji, ani od wchłonięcia implantu przez organizm. Zanim nie rozpoczęliśmy badań nie byliśmy pewni, czy więcej elektrostymulacji da lepsze wyniki. Teraz wiemy,że im więcej tym lepiej. Pracujemy więc nad określeniem idealnego przedziału czasowego, w którym należy stymulować nerwy. Czy jeśli zamiast 6 dni stymulowalibyśmy je przez 12 to osiągnęlibyśmy lepsze wyniki? Może. Właśnie nad tym teraz pracujemy, mówi Ray. Uczeni informują, że możliwe jest też kontrolowanie czasu, w jakim implant zostanie wchłonięty przez organizm. Jest to bowiem uzależnione od wykorzystanych materiałów i grubości urządzenia. Nowe wersje implantu mogą pozostawać w organizmie przez wiele tygodni. Zbudowaliśmy znikające urządzenie. Moja grupa przez niemal 10 lat myślała o stworzeniu biodegradowalnego urządzenia elektrycznego. To było olbrzymie wyzwanie na polu inżynierii materiałowej. Jesteśmy niezwykle podekscytowani, gdyż teraz mamy to, nad czym pracowaliśmy – odpowiednie materiały, urządzenia, proces produkcyjny i całą inżynieryjną koncepcję, cieszy się Rogers. Badania wykazały też, że implant znajdzie szersze zastosowanie niż jedynie dostawca impulsów elektrycznych wspomagających regenerację obwodowego układu nerwowego. Okazało się bowiem, że może pracować też jako tymczasowy rozrusznik serca oraz interfejs dla rdzenia kręgowego. « powrót do artykułu
  3. Uszkodzenie rdzenia kręgowego często kończy się paraliżem. W ostatnich latach naukowcy próbują wykorzystywać komórki macierzyste do naprawy i zastąpienia uszkodzonych komórek nerwowych. Tutaj jednak pojawia się wiele problemów, w tym problem z mieliną, substancją izolującą proteiny i lipidy, która pomaga w przekazywaniu impulsów nerwowych w zdrowych dorosłych włóknach, ale jednocześnie powstrzymuje wzrost nowych neuronów. W najnowszym numerze Science Translational Medicine naukowcy z Uniwersytetu Kalifornijskiego w San Diego poinformowali, że u dorosłych szczurów mielina pomagała we wzroście aksonów w komórkach prekursorowych neuronów (NPC) oraz indukowanych pluripotencjalnych neuronalnych komórek macierzystych. "To naprawdę ważne odkrycie, bo mielina jest silnym inhibitorem regeneracji aksonów w dojrzałych komórkach. Okazuje się jednak, że w komórkach prekursorowych i indukowanych pluripotencjalnych komórkach macierzystych nie ma takiego działania", mówi główny autor badań, profesor Mark Tuszynski z UC San Diego. Uczony, wraz z kolegami z Niemiec i Singapuru, najpierw obserwował wzrost komórek umieszczonych w szalkach Petriego na substracie z mieliny. Gdy dały one dobre wyniki, wykorzystano szczury z uszkodzonym rdzeniem kręgowym i po podaniu im wspomnianych komórek zaobserwowali, że w istocie białej pojawiło się więcej aksonów niż w istocie szarej, a ich wzrost był preferencyjnie powiązany z obecnością mieliny. Gdy z mieliny usunięto niektóre molekuły, o których wiadomo, że silnie powstrzymują rozwój aksonów, udało się zidentyfikować molekułę, nazwaną regulatorem ponownego wzrostu neuronów 1 (reneuronal growth regulator 1), Negr1, która wydaje się działać pomiędzy mieliną a aksonami, pozwalając na wzrost aksonów. Wydaje się, że molekuła ta odgrywa znaczącą rolę podczas rozwoju embrionalnego, gdy bardzo szybko zwiększa się liczba neuronów, ale zanim jeszcze mielina zaczyna wywierać swój hamujący wpływ. Gdy w miejscu uszkodzenia rdzenia kręgowego wstrzyknęliśmy neuronalne komórki macierzyste, pojawiły się tysiące nowych aksonów, które rozprzestrzeniły się na odległość do 50 milimetrów. Z drugiej strony, gdy dorosłe aksony pobudziliśmy do wzrostu, pojawiło się zaledwie 100 aksonów na odległości jednego milimetra. To pokazuje, dlaczego aksony z komórek macierzystych są znacznie lepsze w naprawie uszkodzeń niż znajdujące się na miejscu uszkodzenia dorosłe aksony, dodaje profesor Tuszyński. « powrót do artykułu
×