Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

TESS przysłała pierwsze obrazy

Recommended Posts

Wystrzelona 19 kwietnia misja TESS dostarczyła pierwszych obrazów. Jej celem jest poszukiwanie bliskich planet pozasłonecznych podobnych do Ziemi.

Pierwsze obrazy przesłane przez TESS zostały wykonane 7 sierpnia w ciągu 30 minut. Wykorzystano przy tym wszystkie cztery aparaty pojazdu. Czarne linie na fotografiach to przerwy pomiędzy czujnikami aparatów.

Na fotografiach widzimy południową część nieboskłonu z dziesiątkami gwiazdozbiorów oraz Wielkim i Małym Obłokiem Magellana. Mała jasna kropka nad Małym Obłokiem Magellana to gromada kulista NGC 104 (47 Tucanae), w skład której wchodzą setki tysięcy gwiazd. Dwie gwiazdy, Beta Gruis i R Doradus, są tak jasne, że wypełniły całe kolumny pikseli, przez co widoczne są jako smugi światła. Na sfotografowanym południowym nieboskłonie znamy kilkanaście gwiazd, o których wiemy, że posiadają planety, mówi George Rickers z MIT, główny naukowiec misji TESS.

Misja TESS została przewidziana na dwa lata. W tym czasie urządzenie będzie monitorowało 26 sektorów nieba, poświęcając każdemu z nich 27 dni. W ten sposób sfotografuje 85% nieboskłonu. W pierwszym roku TESS zbada 13 sektorów południowych, a w drugim roku – 13 sektorów północnych. Wykonane zdjęcia będą przechowywane na pokładzie TESS, a co 13,7 doby, gdy pojazd znajdzie się najbliżej Ziemi, będą wysyłane do TESS Payload Operations Center na MIT. Tam zostanie przeprowadzona ich wstępna ocena i analiza, a pełną analizą zajmie się należące do NASA Ames Research Center w Dolinie krzemowej.

Gwiazdy, wokół których TESS poszukuje planet, znajdą się w odległości od 30 do 300 lat świetlnych od Ziemi i są od 30 do 100 razy jaśniejsze niż gwiazdy badane przez Teleskop Keplera. Te drugie są bowiem położone w odległości 300–3000 lat świetlnych.
Planety znalezione przez TESS będą następnie badane przez inne teleskopy, w tym przez Teleskop Kosmiczny Jamesa Webba.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zwykle zastanawiamy się, ile pozasłonecznych planet zawierających życie jesteśmy w stanie zaobserwować z Ziemi. Jednak pytanie to można odwrócić. I właśnie to zrobili profesorowie Lisa Kaltenegger z Cornell University i Joshua Pepper z Lehigh University. Postanowili oni zbadać, z ilu układów planetarnych można bezpośrednio obserwować Ziemię. Innymi słowy, ile potencjalnych cywilizacji pozaziemskich, znajdujących się na podobnym etapie rozwoju, może nas badać.
      Uczeni zidentyfikowali 1004 gwiazdy ciągu głównego, czyli dość podobne do Słońca, które mogą posiadać podobne do Ziemi planety w ekosferze. Wszystkie wspomniane gwiazdy znajdują się w promieniu 300 lat świetlnych od Ziemi, zatem w odległości, z której obca cywilizacja powinna być w stanie wykryć chemiczne sygnatury życia w ziemskiej atmosferze.
      Odwróćmy nasz punkt widzenia. Przenieśmy się na inne planety i zapytajmy, z których układów planetarnych można obserwować tranzyty Ziemi na tle Słońca, mówi Kaltenegger. Uczona przypomina, że obserwowanie tranzytów to kluczowy sposób obserwowania planet pozasłoneczych i określania ich cech charakterystycznych. Już wkrótce, dzięki Teleskopowi Kosmicznemu Jamesa Webba (JWST), będziemy w stanie – badając tranzyty – określać skład chemiczny atmosfer planet spoza Układu Słonecznego. Jeśli z naszego punktu widzenia jakaś planeta przechodzi na tle swojej gwiazdy, zatem znajduje się w linii prostej pomiędzy swoją gwiazdą a Ziemią, to już teraz – badając zmianę jasności gwiazdy przesłoniętej przez planetę – próbujemy określać np. wielkość planety. Instrument taki jak JWST pozwoli badać światło gwiazdy przechodzące przez atmosferę planety i określić skład chemiczny tej planety. Będziemy więc mogli wykrywać w niej molekuły i inne elementy wskazujące na istnienie życia. To samo jednak mogą robić potencjalne cywilizacje pozaziemskie.
      Jedynie niewielki ułamek egzoplanet przechodzi na tle swojej gwiazdy z naszego punktu widzenia. Z punktu widzenia wszystkich zidentyfikowanych przez nas układów Ziemia przechodzi na tle Słońca. A to powinno przyciągnąć uwagę potencjalnych obserwatorów. Jeśli poszukujemy inteligentnego życia, które może nas znaleźć i zechcieć nawiązać kontakt, to właśnie stworzyliśmy mapę, gdzie należy szukać, dodaje Kaltenegger.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Osiem miesięcy po starcie misji CHEOPS, pierwszego europejskiego teleskopu kosmicznego, którego zadaniem jest badanie znanych planet pozasłonecznych, naukowcy opisali jeden z najbardziej ekstremalnych światów, jakie dotychczas poznaliśmy. Obserwacje te potwierdzają, że CHEOPS spełnia związane z nim oczekiwania, mówi profesor Willy Benz z Uniwersytetu w Bernie, który stoi na czele konsorcjum CHEOPS.
      Dzięki danym zebranym przez CHEOPSa naukowcy mogli szczegółowo scharakteryzować planetę WASP-189b. Krąży ona wokół gwiazdy HD 133112, jednej z najgorętszych gwiazd posiadających układ planetarny. Układ planetarny znajduje się w odległości 322 lat świetlnych od Ziemi w Gwiazdozbiorze Wagi. WASP-189b jest szczególnie interesująca, gdyż to gazowy olbrzym, który znajduje się bardzo blisko gwiazdy macierzystej. Okrąża ją w ciągu 3 dni, a odległość pomiędzy gwiazdą a planetą jest 20-krotnie mniejsza niż pomiędzy Ziemią a Słońcem, mówi główna autorka badań, Monika Lendl z Uniwersytetu w Genewie. Uczona dodaje, że WASP-189b jest o 50% większa od Jowisza.
      Planeta ma stałą półkulę dzienną, która jest ciagle wystawiona w stronę gwiazdy, i stałą półkulę nocną. Na podstawie danych z CHEOPSa możemy stwierdzić, że temperatura na planecie dochodzi do 3200 stopni Celsjusza. Jest to więc ultragorący Jowisz. W takiej temperaturze nawet żelazo topnieje i staje się gazem. To jedne z najbardziej ekstremalnych warunków panujących na planetach, mówi Lendl.
      Nie możemy obserwować planety bezpośrednio, gdyż jest zbyt daleko i zbyt blisko swojej gwiazdy. Używamy więc metod pośrednich, dodaje uczona. CHEOPS korzysta z wysoce precyzyjnych pomiarów jasności gwiazdy oraz ich zmian powodowanych przesłanianiem gwiazdy przez planetę przechodzącą na jej tle. Jako,że WASP-189b znajduje się tak blisko gwiazdy, jej strona dzienna jest tak jasna, że możemy zmierzyć „zagubione” światło nawet wówczas, gdy planeta znajduje się za gwiazdą, stwierdza Lendl. Wygląda na to, ze planeta nie odbija zbyt wiele światła swojej gwiazdy. Absorbuje jej energię, co powoduje, że jest podgrzewana i zaczyna świecić, dodaje.
      Naukowcy sądzą, że planeta słabo odbija światło gwiazdy, gdyż w jej atmosferze po stronie dziennej nie ma chmur. To nie jest zaskakujące. Modele teoretyczne mówią, że w tak wysokich temperaturach chmury nie mogą się uformować, stwierdzają autorzy badań.
      Okazało się też, że tranzyty planety nie są symetryczne. Dzieje się tak, gdy planeta ma stałą stronę dzienną i jasną. Dzięki danym z CHEOPSa możemy wnioskować, że sama gwiazda obraca się tak szybko, że nie jest sferą a elipsoidą. Jest rozciągana na równiku, dodaje profesor Benz.
      Sama gwiazda jest znacznie większa i o ponad 2000 stopnie Celsjusza cieplejsza niż Słońce. Przez to wydaje się niebieska, a nie żółta. Znamy niewiele planet krążących wokół tak gorących gwiazd. A ten system jest najjaśniejszy ze zbadanych, dodaje Benz.
      Naukowcy spodziewają się, że to dopiero początek spektakularnych odkryć dokonanych dzięki CHEOPSowi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chińsko-amerykański zespół naukowy donosi o prawdopodobnym odkryciu pierwszej planety poza Drogą Mleczną. Dotychczas udało się odkryć wiele planet pozasłonecznych i kandydatów na planety, jednak wszystkie te obiekty znajdują się w Drodze Mlecznej. Dotychczas jednak nie zidentyfikowano planety, która mogłaby leżeć w innej galaktyce.
      Chińczycy i Amerykanie sądzą, że właśnie mogli znaleźć taką planetę. Obiekt M51-ULS-1b znajduje się w galaktyce Messier 51 (M51, Galaktyka Wir). Znajduje się ona w odległości około 23 milionów lat świetlnych od Ziemi. Można ją zobaczyć z pobliżu ostatniej gwiazdy dyszla Wielkiego Wozu, jednak do obserwacji potrzebny jest teleskop.
      Zaobserwowanie planety położonej tak daleko byłoby niezwykle trudne lub nawet niemożliwe za pomocą współczesnych technik badawczych. Jednak naukowcom z pomocą przyszła nietypowa konfiguracja układu, w której znajduje się M51-ULS-1b.
      Prawdopodobna planeta krąży bowiem wokół układu podwójnego. W jego centrum znajduje się czarna dziura lub gwiazda neutronowa, która właśnie „pożera” swojego towarzysza. W wyniku tego procesu pojawia się silne promieniowanie rentgenowskie, które zwróciło uwagę badaczy. Ponadto źródło tego promieniowania jest bardzo małe. Na tyle małe, że przechodzący na jego tle obiekt, czasowo blokuje promieniowanie. I właśnie takie zjawisko udało się zarejestrować naukowcom z Chin i USA – możliwy tranzyt planetarny trwający około 3 godzin.
      Dotychczas odkrywcy wykluczyli, by to inna gwiazda blokowała promieniowanie rentgenowskie. Obserwowany układ podwójny jest na to zbyt młody. Stwierdzili też, że promieniowanie nie jest blokowane przez materiał wciągany do źródła emisji, gdyż charakterystyki światła nie odpowiadają takiemu wydarzeniu.
      Ostateczne potwierdzenie istnienia planety poza Drogą Mleczną będzie wymagało dalszych badań. Jeśli jednak rzeczywiście mamy do czynienia z planetą to, zdaniem odkrywców, ma ona wielkość Saturna.
      Więcej o odkryciu można przeczytać w serwisie arXiv.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie z University of Warwick są współodkrywcami nowej klasy planet – ultragorących Neptunów. Co interesujące, pierwszy przedstawiciel tej klasy został znaleziony został w miejscu, gdzie planety rozmiarów Neptuna rzadko są znajdowane.
      Pierwszy ultragorący Neptun został odkryty w pobliżu gwiazdy LTT 9779. Obiega on ją w ciągu zaledwie 19 godzin. Jak obliczyli naukowcy, temperatura na powierzchni planety wynosi ponad 1700 stopni Celsjusza.
      Przy takiej temperaturze ciężkie pierwiastki jak żelazo mogą być jonizowane w atmosferze. To zaś stwarza unikatową okazję do badania składu chemicznego planet spoza Układu Słonecznego.
      Planeta LTT 9779B ma masę dwukrotnie większą od masy Neptuna, i jest o niego nieco większa. Ma zatem podobną gęstość. Stąd naukowcy wnioskują, że samo jej jądro ma masę 28 mas Ziemi, a jej atmosfera stanowi około 9% masy planety.
      Sam system liczy sobie 2 miliard y lat i ze względu na intensywne promieniowanie z gwiazdy nie należy planeta nie utrzyma swojej atmosfery zbyt długo.
      LTT 9779 to gwiazda podobna do Słońca położona w odległości 260 lat świetlnych od Ziemi. Jest bardzo bogata w metale, w jej atmosferze znajduje się dwukrotnie więcej żelaza niż w atmosferze Słońca. To zaś może wskazywać, że krążąca wokół niej planeta była w przeszłości znacznie większym gazowym olbrzymem, gdyż „lubią one” gwiazdy z dużą ilością żelaza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astrofizycy z Uniwersytetu Harvarda opublikowali na łamach The Astrophysical Journal Letters teorię, zgodnie z którą Słońce było kiedyś częścią układu podwójnego. Nasza gwiazda miała krążącego wokół niej towarzysza o podobnej masie. Jeśli teoria ta zostanie potwierdzona, zwiększy to prawdopodobieństwo istnienia Obłoku Oorta w takim kształcie, jak obecnie przyjęty i będzie można uznać teorię mówiącą, że tajemnicza Dziewiąta Planeta (Planeta X) została przez Układ Słoneczny przechwycona, a nie uformowała się w nim.
      Autorzy nowej teorii – profesor Avi Loeb i jego student Amir Siraj – postulują, że obecność towarzysza Słońca w klastrze, w którym gwiazdy się uformowały, pozwala wyjaśnić istnienie Obłoku Oorta. Naukowcy mówią, że dotychczasowe teorie pozostawiały wiele niewyjaśnionych zagadnień związanych z Obłokiem Oorta. Przyjęcie, że Słońce było częścią układu podwójnego, pozwala wyjaśnić liczne wątpliwości. Tym bardziej, że nie jest to wcale nieprawdopodobne. Większość gwiazd podobnych do Słońca zaczyna życie w układach podwójnych, mówią uczeni.
      Jeśli Obłok Oorta rzeczywiście został utworzony z obiektów przechwyconych dzięki pomocy towarzysza Słońca, to będzie to niosło istotne implikacje dla naszego rozumienia uformowania się Układu Słonecznego. Układy podwójne znacznie efektywniej przechwytują różne obiekty niż pojedyncze gwiazdy. Jeśli Obłok Oorta rzeczywiście tak się utworzył, będzie to znaczyło, że Słońce miało towarzysza o podobnej masie, stwierdza Loeb.
      Przyjęcie teorii o układzie podwójnym ma też znaczenie dla wyjaśnienia pojawienia się życia na Ziemi. Obiekty z zewnętrznych części Obłoku Oorta mogły odgrywać istotną rolę historii Ziemi. Mogły dostarczyć tutaj wodę i spowodować zagładę dinozaurów. Zrozumienie ich pochodzenia jest bardzo ważne, przypomina Siraj.
      Obaj naukowcy podkreślają, że ich teoria ma też znacznie dla wyjaśnienia zagadki Planety X. Dotyczy to nie tylko Obłoku Oorta ale również ekstremalnie dalekich obiektów transneptunowych, takich jak Dziewiąta Planeta. Nie wiadomo, skąd one pochodzą, jednak nasz model przewiduje, że jest więcej obiektów o orbitach takich jak Dziewiąta, stwierdza Loeb.
      Obecnie nie posiadamy instrumentów, które pozwoliłyby zaobserwować Obłok Oorta czy Dziewiątą Planetę. Jednak już w przyszłym roku ma zacząć działać Vera C. Rubin Observatory (VRO). Będzie ono w stanie zweryfikować istnienie Dziewiątej Planety. Jeśli VRO potwierdzi, że Dziewiąta Planeta istnieje i została przechwycona oraz zaobserwuje podobnie przechwycone planety karłowate, wtedy model binarny zyska przewagę nad obecnymi teoriami o początkach Słońca, mówi Siraj.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...