Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Parker Solar Probe leci dotknąć Słońca

Rekomendowane odpowiedzi

Z Przylądka Canaveral wystartowała Parker Sola Probe, pojazd, który ma wlecieć w atmosferę Słońca. Udany start odbył się o godzinie 9:31 czasu polskiego. Po czterech minutach lotu od rakiety Delta IV Heavy oddzielił się pierwszy stopień i uruchomił się główny silnik drugiego stopnia. Uruchomiono też silniki manewrowe, które ustawiły rakietę w odpowiedniej pozycji do przeprowadzenia kolejnych etapów lotu. Po udanym oddzieleniu trzeciego stopnia rakiety, tego, do którego zamocowana jest Parker Solar Probe, główny silnik trzeciego stopnia został odpalony na 80 sekund. W końcu do centrum kontroli nadeszła informacja o udanym oddzieleniu się PSP od trzeciego stopnia, po czym pojazd rozwinął panele słoneczne i przesłał dane, wskazujące, że wszystko przebiegło zgodnie z planem.

Sonda będzie krążyła wokół naszej gwiazdy i zbierała na jej temat dane. Aby nie ulec potężnej grawitacji Słońca, które stanowi przecież 99,8% masy Układu Słonecznego, PSP musi osiągnąć prędkość nie mniejszą niż 85 000 km/h. Nie jest to łatwe zadanie, dlatego też pojazd aż siedmiokrotnie skorzysta z asysty grawitacyjnej Wenus. W końcu znajdzie się w rekordowo małej odległości 6 milionów kilometrów od powierzchni naszej gwiazdy. Stanie się też najszybszym pojazdem w historii ludzkości. Jej prędkość wyniesie niemal 700 000 km/h. Obecnie rekord prędkości należy do sondy Juno, która poruszała się z prędkością 265 000 km/h względem Ziemi, natomiast najszybszym pojazdem względem Słońca była sonda Helios 2 pędząca z prędkością niemal 253 000 km/h.

Parker Solar Probe to urządzenie rozmiarów małego samochodu. Jego celem jest atmosfera Słońca znajdująca się w odległości około 6,5 miliona kilometrów od powierzchni naszej gwiazdy. Głównym celem misji jest zbadanie, w jaki sposób w koronie Słońca przemieszcza się energia i ciepło oraz odpowiedź na pytanie, co przyspiesza wiatr słoneczny. Naukowcy wiążą z misją olbrzymie nadzieje, licząc, że zrewolucjonizuje ona rozumienie Słońca, Układu Słonecznego i Ziemi.

Próbnik będzie musiał przetrwać temperatury dochodząc do 1370 stopni Celsjusza. Pomoże mu w tym gruba na 11,5 centymetra osłona termiczna (Thermal Protection System) z kompozytu węglowego. Jej celem jest ochrona czterech instrumentów naukowych, które będą badały pola magnetyczne, plazmę, wysokoenergetyczne cząstki oraz obrazowały wiatr słoneczny. Instrumenty mają pracować w temperaturze pokojowej. TPS składa się z dwóch paneli węglowego kompozytu, pomiędzy którymi umieszczono 11,5 centymetra węglowej pianki. Ta strona osłony, która będzie zwrócona w kierunku Słońca została pokryta specjalną białą warstwą odbijającą promieniowanie cieplne.

Osłona o średnicy 2,5 metra waży zaledwie 72,5 kilograma. Musiała być ona lekka, by poruszająca się z olbrzymią prędkością sonda mogła wejść na odpowiednią orbitę wokół naszej gwiazdy

Co interesujące, Parker Solar Probe jest pierwszym pojazdem kosmicznym NASA nazwanym na cześć żyjącej osoby. W ten sposób uhonorowano profesora astrofizyki Eugene'a Parkera z University of Chicago. Zwykle misje NASA zyskują nową, oficjalną nazwę, po starcie i certyfikacji. Tym razem jest inaczej. W uznaniu zasług profesora Parkera na polu fizyki Słońca oraz dla podkreślenia, jak bardzo misja jest związana z prowadzonymi przez niego badaniami, zdecydowano, że oficjalna nazwa zostanie nadana przed startem.

Już na początku października sonda po raz pierwszy przeleci w pobliżu Wenus i trafi na orbitę wokół Słońca. Będzie to orbita o długości 150 dni. Jednak sonda będzie coraz bardziej zbliżała się do naszej gwiazdy. Podczas drugiego przelotu wokół Wenus (21 grudnia 2019) jej orbita wyniesie 130 dni. Po kilku latach, 2 listopada 2024 roku Parker Solar Probe spotka się z Wenus po raz siódmy i ostatni. Wtedy to sonda będzie okrążała Słońce w ciągu zaledwie 88 dni. Niedługo potem, 19 grudnia, podczas 22. peryhelium, Parker Solar Probe pierwszy raz zbliży się do Słońca na minimalną odległość.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jony wystrzeliwane podczas rozbłysków słonecznych są 6,5-krotnie cieplejsze niż dotychczas sądzono, donoszą naukowcy z Wielkiej Brytanii i USA. Ich odkrycie stanowi jednocześnie rozwiązanie zagadki, która od lat 70. XX wieku trapiła specjalistów zajmujących się badaniem naszej gwiazdy. Wówczas zauważono, że linie spektralne promieniowania słonecznego są szersze niż spodziewane w zakresie ekstremalnego ultrafioletu i promieniowania rentgenowskiego. Przez 50 lat uważano, że ma to związek z turbulencjami, jednak nikt nie potrafił zidentyfikować natury tych turbulencji, co stawiało całą hipotezę pod znakiem zapytania.
      Rozbłyski słoneczne to skutek gwałtownego uwolnienia energii z zewnętrznych warstw atmosfery Słońca, w wyniku której jej fragmenty są podgrzewane do temperatury ponad 10 milionów stopni Celsjusza. Badanie tych wydarzeń ma jak najbardziej praktyczny wymiar. Gwałtowne skoki promieniowania związane z rozbłyskami zagrażają satelitom, astronautom, zaburzają górne warstwy atmosfery Ziemi.
      Badacze chcieli poznać mechanizm, za pomocą którego rozbłyski podgrzewają plazmę – złożoną z jonów i elektronów – do ponad 10 milionów stopni Celsjusza. W trakcie swych badań zauważyli, że jony, stanowiące nawet połowę plazmy, są podgrzewane znacznie silniej niż elektrony. Okazało się, że ich temperatura sięga 60 milionów stopni Celsjusza.
      Jesteśmy niezwykle podekscytowani spostrzeżeniem, że w wyniku rekoneksji magnetycznej jony osiągają 6,5-krotnie wyższą temperaturę niż elektrony. Wydaje się to uniwersalną zasadą, którą potwierdza to, co dzieje się w pobliżu Ziemi, badania wiatru słonecznego i symulacje komputerowe. Dotychczas jednak nikt nie łączył tego z rozbłyskami słonecznymi. Przyjmowano, że jony i elektrony muszą mieć tę samą temperaturę. Jednak gdy obliczyliśmy wszystko ponownie, korzystając z nowych danych, okazało się, że w wielu istotnych fragmentach rozbłysków słonecznych różnice temperatur pomiędzy jonami i elektronami mogą utrzymywać się przez dziesiątki minut, mówi główny autor badań, doktor Alexander Russell z University of St Andrews.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Odkrycie nowej komety poruszyło środowisko astronomów, gdyż istnieje prawdopodobieństwo, że pochodzi ona spoza Układu Słonecznego. Jeśli tak, to jest ona drugim, po słynnym 1I/Oumuamua, obiekt, który odwiedził Układ Słoneczny.
      Kometę odkrył 30 sierpnia 2019 roku Gienadij Borisow w obserwatorium MARGO na Krymie. Na razie oznaczono ją jako C/2019 Q4. Jeśli się potwierdzi, że pochodzi spoza Układu Słonecznego zostanie nazwany zgodnie z nomenklaturą stworzoną przy okazji Oumuamua, gdzie „I” oznacza „Interstellar” (Międzygwiezdny), a „1” jest liczbą porządkową przypisaną pierwszemu takiemu obiektowi.
      C/2019 Q4 wciąż porusza się w kierunku Słońca, jednak wstępne badania trajektorii wskazują, że nie zbliży się do naszej gwiazdy na odległość mniejszą niż Mars, a do Ziemi podleci nie bliżej niż 300 milionów kilometrów.
      Wkrótce po odkryciu komety używany przez NASA system Scout automatycznie zakwalifikował ją jako obiekt o możliwym pochodzeniu pozasłonecznym. Davide Farnocchia z należącego do NASA Center for Near-Earth Object Studies nawiązał współpracę z europejskim Near-Earth Object Coordination Center w celu wykonania dodatkowych obserwacji, a następnie przeanalizował je ze specjalistami z Minor Planet Center. Dzięki temu wiemy, że obecnie kometa znajduje się w odległości 420 milionów kilometrów od Słońca, a 8 grudnia bieżącego roku osiągnie peryhelium w odległości 300 milionów kilometrów.
      Obecnie kometa porusza się z dużą prędkością, wynoszącą 150 000 km/h, co jest wartością znacznie wyższą od prędkości typowych komet okrążających Słońce i znajdujących się w takiej właśnie odległości. Ta wielka prędkość wskazuje, że kometa prawdopodobnie pochodzi spoza Układu Słonecznego oraz że go opuści i poleci w przestrzeń międzygwiezdną, mówi Farnocchia.
      Eksperci wyliczyli też, że 26 października kometa przetnie płaszczyznę ekliptyki planet słonecznych pod kątem 40 stopni. C/2019 Q4 będzie widoczny jeszcze przez wiele miesięcy, jednak do jego obserwacji potrzebny będzie profesjonalny sprzęt. "Obiekt osiągnie najwięszą jasność w połowie grudnia i będzie go można obserwować za pomocą średniej wielkości urządzeń do kwietnia 2020 roku. Użytkownicy dużych profesjonalnych teleskopów będą mogli prowadzić obserwacje do października 2020", mówi Farnocchia.
      Astronomowie z Uniwersytetu Hawajskiego określili wielkość jądra komety na 2–16 kilometrów średnicy.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niedawno astronomowie usłyszeli głos z kosmicznych zaświatów. Potężny krótkotrwały impuls na chwilę przyćmił wszystkie źródła sygnałów radiowych. Clancy James z australijskiego Curtin University i jego zespół skanowali nieboskłon za pomocą Australian Square Kilometre Array Pathfinder (ASKAP) – zestawu 36 radioteleskopów znajdujących się w Zachodniej Australii – odebrali krótki, bardzo silny sygnał. 
      Niezwykle podekscytowani stwierdzili, być może odkryli nowy pulsar lub inny obiekt, a że źródło sygnału  wydawało się pochodzić z naszej galaktyki, stwierdzili, że nowy obiekt powinien być widoczny za pomocą teleskopów optycznych. Jednak gdy bardziej szczegółowo przeanalizowali sygnał okazało się, że jego źródło było tak blisko, iż ASKAP nie skupić na nim jednocześnie wszystkich swoich anten. A to oznaczało, że źródło sygnału musi znajdować się mniej niż 20 tysięcy kilometrów od Ziemi. Impuls trwał zaledwie 30 nanosekund i przez tę chwilę silniejszy, niż wszystko inne rejestrowane za pomocą radioteleskopów.
      Gdy Australijczycy przeanalizowali pozycję źródła sygnału i porównali ją z pozycjami wszystkich znanych satelitów okazało się, że jedynym możliwym źródłem sygnału jest Relay 2. To jeden z pierwszych satelitów w historii. Został wystrzelony w 1964 roku i służył NASA jako eksperymentalne urządzenie komunikacyjne. Agencja przestała używać Relay 2 już w 1965 roku, natomiast pokładowa elektronika satelity działała do roku 1967. Wówczas Relay 2 zamilkł i od tej pory krąży wokół Ziemi jako bezwładny kawałek metalu.
      Teraz, po niemal 60 latach satelita znowu wysłał sygnał. Jednak jego urządzenie nie działają, więc źródłem sygnału musiały być czynniki zewnętrzne. Clancy i jego koledzy sądzą, że albo na powierzchni satelity zebrały się ładunki elektrostatyczne i doszło do wyładowania, albo uderzył w niego mikrometeoryt, który wywołał pojawienie się chmury plazmy. Sygnały z obu tych wydarzeń wyglądają podobnie, więc trudno byłoby je odróżnić. Przede wszystkim ktoś musiałby chcieć przeprowadzić takie badania. Tylko po co?
      Źródło: A nanosecond-duration radio pulse originating from the defunct Relay 2 satellite, https://arxiv.org/abs/2506.11462

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Inżynierowie misji Voyager wyłączyli niedawno CRS (Cosmic Ray Subsystem) na Voyagerze 1, a za dwa tygodnie wyłączą Low-Energy Charged Particle (LECP) na Voyagerze 2. Instrumenty, jak można domyślić się z ich nazw, odpowiadają za badanie promieniowania kosmicznego oraz niskoenergetycznych jonów. Po wyłączeniu wspomnianych urządzeń na każdej z sond będzą działały po 3 instrumenty naukowe. Odłączanie instrumentów ma na celu zaoszczędzenie energii i przedłużenie czasu działania sond – jedynych wysłanych przez człowieka obiektów, które opuściły Układ Słoneczny.
      Voyagery zasilane są przez radioizotopowe generatory termoelektryczne, generujące energię z rozpadu dwutlenku plutonu-238. Początkowo generatory wytwarzały energię o mocy około 475 W, jednak w miarę zużywania się paliwa tracą rocznie około 4,3 W. W przestrzeni kosmicznej przebywają już od 48 lat. Sposobem na poradzenie sobie ze zmniejszaniem mocy, jest wyłączanie kolejnych instrumentów. Jeśli byśmy nie wyłączali instrumentów, Voyagerom zostałoby prawdopodobnie kilka miesięcy pracy, mówi Suzanne Dodd.
      Na pokładzie każdej z sond znajduje się 10 identycznych instrumentów naukowych. Zadaniem części z nich było zabranie danych z gazowych olbrzymów Układu Słonecznego, zostały więc wyłączone zaraz po tym, jak sondy skończyły badania tych planet. Włączone zostały te instrumenty, które naukowcy uznali za potrzebne do zbadania heliosfery i przstrzeni międzygwiezdnej. Voyager 1 dotarł do krawędzi heliosfery w 2012 roku, Voyager 2 – w roku 2018.
      W październiku ubiegłego roku na Voyagerze 2 wyłączono instrument badający ilość plazmy i kierunek jej ruchu. W ostatnich latach instrument ten zebrał niedużą ilość danych, gdyż jest zorientowany w kierunku przepływu plazmy w ośrodku międzygwiezdnym. Voyager 1 przestał badać plazmę wiele lat temu, ze względu na spadającą wydajność urządzenia.
      Wyłączony właśnie CRS na Voyagerze 1 to zestaw trzech teleskopów badających m.in. protony z przestrzeni międzygwiezdnej i Słońca. Dane te pozwoliły określić, w którym miejscu i kiedy Voyager 1 opuścił heliosferę. LECP na Voyagerze 2, który ma zostać wkrótce wyłączony, bada różne jony, elektrony i promieniowanie kosmiczne zarówno z Układu Słonecznego, jak i spoza niego.
      Oba instrumenty wykorzystują obracające się platformy, mogą więc prowadzić badania w promieniu 360 stopni. Platformy wyposażono w silniki krokowe, które o obracały je co 192 sekundy. Na Ziemi platformy zostały przetestowane na 500 000 kroków. Tyle, ile potrzeba było, by misje doleciały do Saturna. Okazały się jednak znacznie bardziej wytrzymałe. Mają za sobą już ponad 8,5 miliona kroków.
      Voyagery miały zbadać zewnętrzne planety Układu Słonecznego i już dawno przekroczyły przewidywany czas działania. Każdy bit dodatkowych danych, które od tej pory udało się zebrać, to nie tylko wartościowa informacja dla heliofizyki, ale też świadectwo niezwykłych osiągnięć inżynieryjnych, stwierdza Patrick Koehn, odpowiedzialny za program naukowy Voyagerów.
      Inżynierowie NASA starają się, by instrumenty naukowe na sondach działały jak najdłużej, gdyż dostarczają unikatowych danych. W tak dalekich regionach kosmosu nie pracował jeszcze żaden instrument i przez najbliższe dziesięciolecia żaden nowy nie zostanie tam wysłany.
      Wyłączenie wspomnianych urządzeń oznacza, że sondy będą miały wystarczająco dużo energii, by działać przez około rok, zanim zajdzie konieczność wyłączenia następnych urządzeń. W tej chwili na Voyagerze 1 pracuje magnetometr i Plasma Wave Subsystem (PWS), odpowiedzialny za badanie gęstości elektronowej. Działa też LECP, który zostanie wyłączony w przyszłym roku. Na Voyagerze 2 działają zaś – nie licząc LECP, który wkrótce będzie wyłączony – magnetometr, PWS oraz CRS. W przyszłym roku inżynierowie wyłączą ten ostatni.
      Eksperci z NASA mają nadzieję, że dzięki tego typu działaniom jeszcze w latach 30. bieżącego wieku na każdym z Voyagerów będzie pracował jeszcze co najmniej 1 instrument naukowy. Czy tak się stanie, tego nie wiadomo. Trzeba pamiętać, że obie sondy od dziesięcioleci ulegają powolnej degradacji w surowym środowisku pozaziemskim.
      Obecnie Voyager 1 znajduje się w odległości ponad 25 miliardów kilometrów od Ziemi, a do Voyagera 2 dzieli nas 21 miliardów km. Sygnał radiowy do pierwszego z nich biegnie ponad 23 godziny, do drugiego – 19,5 godziny.
      W każdej minucie każdego dnia Voyagery badają zupełnie nieznane nam regiony, dodaje Linda Spilker z Jet Propulsion Laboratory. Oba pojazdy można na bieżąco śledzić na stronach NASA.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...