Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jezioro ciekłej wody pod powierzchnią Marsa?

Rekomendowane odpowiedzi

Głęboko pod zamarzniętą powierzchnią Marsa prawdopodobnie odkryto pierwszy na Czerwonej Planecie zbiornik ciekłej wody. Zimne słone jezioro przykryte od góry olbrzymią masą lodu zostało znalezione za pomocą radaru. Jest mało możliwe, by istniało w nim życie, ale jego znalezienie z pewnością zintensyfikuje wysiłki mające na celu odnalezienie innych zbiorników ciekłej wody, które mogą znajdować się pod powierzchnią Marsa.

Martin Siegert, geofizyk z Imperial College London, który stoi na czele konsorcjum próbującego dowiercić się do Lake Ellsworth w Zachodniej Antarktyce mówi, że marsjańskie jezioro przypomina te ziemskie ukryte pod pokrywami lodowymi obu biegunów.
Odkrycia jeziora dokonał instrument MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) znajdujący się na pokładzie orbitera Mars Express Europejskiej Agencji Kosmicznej. MARSIS wysyła w stronę Marsa fale radiowe i nasłuchuje odbić. Niektóre fale odbijają się od powierzchni, inne penetrują planetę nawet na 3 kilometry w głąb i zostają odbite gdy napotkają różnice w strukturze warstw.

Po wielu latach od rozpoczęcia misji z Mars Express zaczęły napływać dane w postaci niewielkich wyraźnych sygnałów, które mogły wskazywać, że pod lodem znajdują się nie tylko skały, ale i woda w stanie ciekłym. Naukowcy wątpili jednak w te dane, gdyż nie pojawiały się one podczas każdego przelotu nat biegunem. Jednak z czasem specjaliści zdali sobie sprawę, że komputer uśrednia dane, by zmniejszyć ich ilość, a robiąc to, redukuje siłę sygnału anomalii. Nie widzieliśmy tego, co mieliśmy tuż pod nosem, mówi Roberto Orosei, główny naukowiec MARSIS z Włoskiego Narodowego Instytutu Astrofizyki w Bolonii.

Uczeni zalecili więc układom pamięci Mars Express, by dane zabrane podczas krótkich przelotów nad biegunem, nie były obrabiane. Komputer miał je przechowywać i przesyłać w postaci surowej. To był strzał w dziesiątkę. W latach 2012–2015 Mars Express przekazał informacje o bardzo silnym odbitym sygnale zebrane z 29 przelotów nad biegunem południowym. Najjaśniejszy ślad pochodził z regionu oddalonego o 9 stopni od bieguna, z głębokości 1,5 kilometra, a jego długość to 20 kilometrów.

Siła odbitego sygnału nie wystarczy, by jednoznacznie stwierdzić, że mamy do czynienia z wodą. Z pomocą przychodzi możliwość określenia przenikalności elektrycznej interesującej nas struktury. Aby ją określić trzeba znać siłę sygnału odbitego, a tę naukowcy mogli szacować jedynie w przybliżeniu. Jednak to wystarczyło, by stwierdzić, że przenikalność elektryczna interesującej ich struktury jest większa niż gdziekolwiek indziej na Marsie i jest porównywalna z przenikalnością znajdujących się pod lodem jezior na Ziemi. Orosei zapewnia też, że nie mamy tutaj do czynienia z cienką warstwą wody.

Jednak taka interpretacja nie wszystkich przekonuje. To interpretacja prawdopodobna, ale nie jest to dowód, mówi Jeffrey Plaut z zespołu zajmującego się MARSIS z ramienia NASA.

Przede wszystkim trudno jest wyjaśnić istnienie podlodowego jeziora na południowym biegunie Marsa. Na Ziemi ciśnienie wywierane przez lód obniża temperaturę punktu topnienia lodu, a ciepło z wnętrza Ziemi ogrzewa lód i w ten sposób powstają jeziora ukryte pod kilometrami lodu. Jednak Mars jest martwy z geologicznego punktu widzenia. We wnętrzu planety jest niewiele ciepła. Ponadto Czerwona Planeta ma słabą grawitację i 1,5 kilometra lodu nie obniża zbytnio temperatury punktu topnienia. Orosei podejrzewa jednak, że to sole, przede wszystkim zaś nadchlorany znalezione w marsjańskim gruncie, obniżają temperaturę topnienia lodu.

Jeśli ma rację, to mamy do czynienia z bardzo słonym i zimnym jeziorem. Jest mało prawdopodobne, by istniało w nim życie. Jeśli marsjańskie życie jest podobne do ziemskiego, to jest tam za zimno i zbyt dużo soli, stwierdza geofizyk David Stillman z Southwest Research Institute w Boulder w stanie Kolorado.

Naukowcy nie tracą jednak nadziei. Jak zauważa Valerie Ciarletti z Uniwersytetu Paryż-Saclay, która buduje radar dla europejskiej misji ExoMars, woda może istnieć też na innych szerokościach. Wielkim odkryciem byłoby znalezienie wody w głębi Marsa poza czapą lodową na biegunie.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe czy jest jakakolwiek możliwość na "słodką" wodę. Raczej nie, ale któż to wie na pewno.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Na łamach Science Advances opisano rewolucyjny scenariusz terraformowania Marsa i ogrzania jego powierzchni. Pomysł, przedstawiony przez naukowców z University of Chicago, Northwestern University oraz University of Central Florida, polega na uwolnieniu do atmosfery odpowiednio przygotowanych cząstek pyłu, które ogrzałyby Czerwoną Planetę o ponad 50 stopni Fahrenheita (ok. 28 stopni Celsjusza). Opisana metoda może być 5000 razy bardziej efektywna, niż dotychczas proponowane.
      Średnia temperatura na powierzchni Marsa wynosi -60 stopni Celsjusza, jej podniesienie o 28 stopni byłoby olbrzymią zmianą, pozwalającą na istnienie mikroorganizmów i wody w stanie ciekłym na dużych obszarach planety.
      Tym, co wyróżnia nową metodę jest wykorzystanie materiałów łatwo dostępnych ma Marsie. Wcześniej proponowane sposoby albo zakładały import materiałów z Ziemi, albo prowadzenie na Czerwonej Planecie działalności górniczej i wydobywanie rzadkich minerałów.
      Podniesienie temperatury planety trwałoby wiele dekad. Nie spowodowałoby, oczywiście, że przebywający na Marsie ludzie mogliby pozbyć się skafandrów czy oddychać tamtejszą atmosferą. Jednak położyłoby podwaliny, pod taki rozwój wydarzeń. Pozwoliłoby na istnienie wody w stanie ciekłym, istnienie mikroorganizmów oraz uprawę roślin, które stopniowo uwalniałyby tlen do atmosfery.
      Podstawowym krokiem na drodze ku uczynieniu Marsa bardziej zdatnym do życia, jest podniesienie temperatury. Można zrobić to samo, co ludzie niechcący zrobili na Ziemi, wypuścić do atmosfery materiał, który zwiększy naturalny efekt cieplarniany, utrzymując energię Słońca przy powierzchni planety. Problem w tym, że – niezależnie czym byłby taki materiał – potrzebne są jego gigantyczne ilości. Dotychczasowe propozycje zakładały albo przywożenie gazów z Ziemi, albo wydobywanie na Marsie potrzebnych materiałów. Jedno i drugie jest niezwykle kosztowne i trudne do zrealizowania. Autorzy najnowszych badań zastanawiali się, czy można do ogrzania Marsa wykorzystać jakiś obecny na miejscu łatwo dostępny materiał.
      Z dotychczasowych badań wiemy, że marsjański pył jest pełen żelaza i aluminium. Cząstki tego pyłu nie są w stanie ogrzać planety. Ich skład i rozmiary są takie, że po uwolnieniu do atmosfery doprowadziłyby do schłodzenia powierzchni Marsa.
      Naukowcy wysunęli hipotezę, że gdyby pył ten miał inny kształt, być może zwiększałby, a nie zmniejszał, efekt cieplarniany.
      Stworzyli więc cząstki o kształcie pręcików i rozmiarach komercyjnie dostępnego brokatu. Są one w stanie zatrzymywać uciekającą energię cieplną i rozpraszają światło słoneczne w stronę powierzchni planety.
      Sposób, w jaki światło wchodzi w interakcje z obiektami wielkości mniejszej niż długość fali, to fascynujące zagadnienie. Dodatkowo można tak przygotować nanocząstki, że pojawią się efekty optyczne wykraczające poza to, czego możemy spodziewać się po samych tylko rozmiarach cząstek. Uważamy, że możliwe jest zaprojektowanie nanocząstek o jeszcze większe efektywności, a nawet takich, których właściwości optyczne zmieniają się dynamicznie, mówi współautor badań, Ansari Mohseni.
      A profesor Edwin Kite dodaje, że zaproponowana metoda wciąż będzie wymagała użycia milionów ton materiału, ale to i tak 5000 razy mniej, niż zakładały wcześniejsze propozycje. To zaś oznacza, że jest ona tańsza i łatwiejsza w użyciu. Ogrzanie Marsa do tego stopnia, by na jego powierzchni istniała ciekła woda, nie jest więc tak trudne, jak dotychczas sądzono, dodaje Kite.
      Z obliczeń wynika, że gdyby wspomniane cząstki były stale uwalniane w tempie 30 litrów na sekundę, to z czasem średnia temperatura na powierzchni Marsa mogłaby wzrosnąć o 28 stopni Celsjusza, a pierwsze efekty takich działań byłyby widoczne już w ciągu kilku miesięcy. Efekt cieplarniany można by też odwrócić. Wystarczyłoby zaprzestać uwalniania cząstek, a w ciągu kilku lat sytuacja wróciłaby do normy.
      Autorzy propozycji mówią, że potrzebnych jest jeszcze wiele badań. Nie wiemy na przykład dokładnie, w jakim tempie uwolnione cząstki krążyłyby w atmosferze. Ponadto na Marsie występuje woda i chmury. W miarę ogrzewania atmosfery mogłoby dochodzić do kondensacji pary wodnej na uwolnionych cząstkach i ich opadania wraz z deszczem. Klimatyczne sprzężenia zwrotne są bardzo trudne do modelowania. Żeby zaimplementować naszą metodę musielibyśmy mieć więcej danych z Marsa i Ziemi. Musielibyśmy też pracować powoli i mieć pewność, że skutki naszych działań są odwracalne, dopiero wtedy moglibyśmy zyskać pewność, że to zadziała, ostrzega Kite. Ponadto, jak podkreśla uczony, badacze skupili się na aspektach związanych z podniesieniem temperatury do poziomu użytecznego dla istnienia mikroorganizmów i potencjalnej uprawy roślin, a nie na stworzeniu atmosfery, w której ludzie będą mogli oddychać.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W każdej próbce wody pobranych z 30 mazurskich jezior znaleziono mikroplastik, a jego ilość w wodzie była ściśle związana ze stopnie zurbanizowania linii brzegowej, informują naukowcy z Uniwersytetu w Białymstoku. Badania prowadzone były w ramach studiów doktoranckich Wojciecha Pola pd kierunkiem doktora habilitowanego Piotra Zielińskiego. Uzyskane wyniki pozwoliły na opracowanie uniwersalnego wskaźnika potencjalnego zagrożenia jezior mikroplastikiem na podstawie zurbanizowania linii brzegowej.
      Z każdego badanego zbiornika, pobieraliśmy 30 litrów wody ze strefy pelagialu, czyli oddalonej od brzegu. Następnie próbka była zagęszczana, a potem badana w naszym wydziałowym laboratorium, gdzie z użyciem oleju rycynowego izolowaliśmy plastik, odfiltrowując go na filtrach z włókna szklanego (klasy GF/C). Następnie, już bezpośrednio na filtrach, plastik był zliczany a każda drobina opisywana pod kątem wielkości, koloru i formy. Stopień zanieczyszczenia został przez nas określony w liczbie fragmentów mikroplastiku na litr wody, wyjaśnia Wojciech Pol. W badanych jeziorach stwierdzono od 0,27 do 1,57 kawałków mikroplastiku na każdy litr wody.
      Naukowcy badali też morfologię, cechy hydrologiczne oraz zasobność jezior z substancje odżywcze, analizowali zagospodarowanie zlewni, linię brzegową, natężenie turystyki i wydajność oczyszczalni ścieków.
      Badacze zauważyli, że parametry jezior takie jak kształt, wielkość, głębokość czy bogactwo substancji odżywczych nie mają większego związku z zagęszczeniem plastiku. Istnieje jednak związek pomiędzy połączeniami jezior a ilością mikroplastiku. Im dalej jezioro znajduje się w ciągu zbiorników połączonych rzekami i kanałami, tym większe w nim zagęszczenie mikroplastiku.
      Szczegóły pracy zostały opublikowane na łamach Science of The Total Environment.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Analiza danych z misji InSight wykazała, że jądro Marsa jest całkowicie płynne. Ma więc inną budowę niż jądro Ziemi, gdzie stałe jądro wewnętrzne otoczone jest przez płynne jądro zewnętrzne. Dotychczas nikt nie był w stanie stwierdzić, jaki jest stan skupienia jądra Czerwonej Planety. Udało się to dopiero uczonym z USA, Belgii, Niemiec i Francji, którzy podczas swoich badań wykorzystali dane z InSight.
      Zrozumienie struktury wewnętrznej oraz atmosfery Marsa jest niezbędne do opisania historii tworzenia się i ewolucji planety. Wysłana w 2018 roku InSight zebrała unikatowe dane na temat jej budowy zewnętrznej. Misja zakończyła się w grudniu ubiegłego roku, ale naukowcy z całego świata wciąż analizują przysłane przez nią dane.
      Na ich podstawie badacze stwierdzili, że pod płaszczem, które w całości jest ciałem stałym, znajduje się jądro o średnicy 1835 ± 55 km i średniej gęstości 5955–6290 kg/m3. Nasze analizy danych z InSight stanowią argument przeciwko istnieniu stałego jądra wewnętrznego i pokazują kształt jądra wskazując, że głęboko w płaszczu istnieją wewnętrzne anomalie masy. Znaleźliśmy też dowody na powolny wzrost tempa ruchu obrotowego Marsa, który może być powodowany długoterminowym trendem w wewnętrznej dynamice Marsa lub wpływem jego atmosfery i pokryw lodowych, czytamy w artykule opublikowanym na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ponad połowa największych jezior na świecie traci wodę, wynika z badań przeprowadzonych przez międzynarodowy zespół naukowy z USA, Francji i Arabii Saudyjskiej. Przyczynami tego stanu rzeczy są głównie globalne ocieplenie oraz niezrównoważona konsumpcja przez człowieka. Jednak, jak zauważają autorzy badań, dzięki opracowanej przez nich nowej metodzie szacunku zasobów wody, trendów oraz przyczyn jej ubywania, można dostarczyć osobom odpowiedzialnym za zarządzanie informacji, pozwalającymi na lepszą ochronę krytycznych źródeł wody.
      Przeprowadziliśmy pierwsze wszechstronne badania trendów oraz przyczyn zmian ilości wody w światowych jeziorach, wykorzystując w tym celu satelity oraz modele obliczeniowe, mówi główny autor badań, Fangfang Yao z Uniwersytetu Kalifornijskiego w Boulder (CU Boulder). Mamy dość dobre informacje o słynnych jeziorach, jak Morze Kaspijskie, Jezioro Aralskie czy Salton Sea, jeśli jednak chcemy dokonać szacunków w skali globalnej, potrzebujemy wiarygodnych informacji o poziomie wód i objętości jeziora. Dzięki tej nowej metodzie możemy szerzej spojrzeć na zmiany poziomu wód jezior w skali całej planety, dodaje profesor Balaji Rajagopalan z CU Boulder.
      Naukowcy wykorzystali 250 000 fotografii jezior wykonanych przez satelity w latach 1992–2020. Na ich podstawie obliczyli powierzchnię 1972 największych jezior na Ziemi. Użyli też długoterminowych danych z pomiarów poziomu wód z dziewięciu satelitów. W przypadku tych jezior, co do których brak było danych długoterminowych, wykorzystano pomiary wykorzystane za pomocą bardziej nowoczesnego sprzętu umieszczonego na satelitach. Dzięki połączeniu nowych danych z długoterminowymi trendami byli w stanie ocenić zmiany ilości wody w jeziorach na przestrzeni kilku dziesięcioleci.
      Badania pokazały, że 53% największych jezior na świecie traci wodę, a jej łączny ubytek jest 17-krotnie większy niż pojemność największego zbiornika na terenie USA, Lake Meads. Wynosi zatem około 560 km3 wody.
      Uczeni przyjrzeli się też przyczynom utraty tej wody. W przypadku około 100 wielkich jezior przyczynami były zmiany klimatu oraz konsumpcja przez człowieka. Dzięki tym badaniom naukowcy dopiero teraz dowiedzieli się, że za utratą wody w jeziorze Good-e-Zareh w Afganistanie czy Mar Chiquita w Argentynie stoją właśnie takie przyczyny. Wśród innych ważnych przyczyn naukowcy wymieniają też odkładanie się osadów. Odgrywa ono szczególnie ważną rolę w zbiornikach, które zostały napełnione przed 1992 rokiem. Tam zmniejszanie się poziomu wody jest spowodowane głównie zamuleniem.
      Podczas gdy w większości jezior i zbiorników wody jest coraz mniej, aż 24% z nich doświadczyło znacznych wzrostów ilości wody. Są to głównie zbiorniki znajdujące się na słabo zaludnionych terenach Tybetu i północnych części Wielkich Równin oraz nowe zbiorniki wybudowane w basenach Mekongu czy Nilu.
      Autorzy badań szacują, że około 2 miliardów ludzi mieszka na obszarach, gdzie w zbiornikach i jeziorach ubywa wody, co wskazuje na pilną potrzebę uwzględnienia takich elementów jak zmiany klimatu, konsumpcja przez człowieka czy zamulanie w prowadzonej polityce. Jeśli na przykład konsumpcja przez człowieka jest ważnym czynnikiem prowadzącym do utraty wody, trzeba wprowadzić mechanizmy, które ją ograniczą, mówi profesor Ben Livneh. Uczony przypomina jezioro Sevan w Armenii, w którym od 20 lat poziom wody rośnie. Autorzy badań łączą ten wzrost z wprowadzonymi i egzekwowanymi od początku wieku przepisami dotyczącymi sposobu korzystania z wód jeziora.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Weteran badań Marsa, łazik Curiosity, od pewnego czasu wykonuje zdjęcia chmur na Czerwonej Planecie. Niedawno przysłał na Ziemię wyjątkowe obrazy, w tym pierwszą sfotografowaną na Marsie tak wyraźną śreżogę, czyli promienie słoneczne przeświecające przez warstwę chmur.
      Większość chmur na Marsie znajduje się na wysokości nie większej niż 60 km. Jednak chmury na najnowszych obrazach wydają się być znacznie wyżej, gdzie jest wyjątkowo zimno. Dlatego naukowcy przypuszczają, że tworzy je zamarznięty dwutlenek węgla.
      Obserwując kiedy, gdzie i na jakich wysokościach formują się marsjańskie chmury, naukowcy mogą dowiedzieć się więcej na temat składu atmosfery Czerwonej Planety, jej temperatury oraz wiejących w niej wiatrów.
      Przed kilkoma tygodniami łazik sfotografował nawet chmury iryzujące. Iryzacja oznacza, że cząstki znajdujące się w danej części chmury są identycznej wielkości. Patrząc na zmiany koloru, widzimy zmiany wielkości cząstek, a to pokazuje nam ewolucję chmury w czasie, wyjaśnia Mark Lemmon ze Space Science Institute w Boulder.
      Łazik Curiosity trafił na Marsa w sierpniu 2012 roku. Pracuje w kraterze Gale i dotychczas przebył ponad 29 kilometrów po powierzchni Czerwonej Planety. Bada tam pierwiastki niezbędne do powstania życia, poszukuje śladów procesów biologicznych, przygląda się składowi powierzchni Marsa, prowadzi badania ewolucji atmosfery, obiegu wody i promieniowania na powierzchni planety. To czwarty z pięciu łazików, jakie NASA wysłała na Marsa i, obok Perseverance, jeden z dwóch obecnie działających.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...