Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Psy wiedzą, jakie emocje malują się na ludzkiej twarzy
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Wysoki odsetek ludzi cierpiących na zaburzenia ze spektrum autyzmu to skutek tego, w jaki sposób ewoluowaliśmy, uważają autorzy artykułu opublikowanego na łamach Molecular Biology and Evolution. Wielu naukowców uważa, że autyzm i schizofrenia mogą być zaburzeniami dotykającymi wyłącznie ludzi. Bardzo rzadko bowiem u zwierząt innych niż H. sapiens obserwuje się zachowania identyfikowane z tymi chorobami.
Dzięki postępom w analizie RNA pojedynczych komórek wiemy, że komórki mózgu ssaków są bardzo zróżnicowane, a w mózgu ludzi zaszły szybkie zmiany genetyczne, których nie obserwujemy u innych ssaków.
Autorzy najnowszych badań, Alexander L. Starr i Hunter B. Fraser z Uniwersytetu Stanforda przeanalizowali niedawno opublikowane bazy danych zawierające informacje z sekwencjonowania pojedynczych jąder komórkowych (scRNA-seq) w trzech różnych obszarach mózgu. Zauważyli, że najpowszechniej występujące w zewnętrznej warstwie mózgu neurony L2/3 IT ewoluowały u ludzi wyjątkowo szybko w porównaniu z innymi małpami. A co najbardziej zaskakujące, ta błyskawiczna ewolucja wiązała się z olbrzymimi zmianami w genach, które powiązane są z autyzmem. Prawdopodobnie cały proces napędzany był selekcją naturalną właściwą wyłącznie dla rodzaju Homo.
Starr i Fraser uważają, że wyniki ich badań bardzo silnie wskazują, że podczas ewolucji człowieka doszło do pojawienia się genów odpowiedzialnych za autyzm. Jednak przyczyny takiej zmiany nie są jasne. Nie wiemy, jakie korzyści z tych genów mogli odnosić nasi przodkowie. Niewiele bowiem wiemy o anatomii mózgu, połączeniach między neuronami czy zdolnościach poznawczych przodków H. sapiens. Badacze spekulują, że być może geny powodujące autyzm odpowiadają też za spowolnienie rozwoju, dzięki czemu nasze mózgi po urodzeniu rozwijają się wolniej niż na przykład mózgu szympansów. Warto też zauważyć, że autyzm i schizofrenia często zaburzają właściwe człowiekowi umiejętności wytwarzania i rozumienia mowy.
Być może geny, które powodują autyzm, dały nam korzyść w postaci spowolnienia rozwoju mózgu, co umożliwiło wykształcenie się złożonego języka oraz bardziej złożonych procesów myślowych. Nasze badania wskazują, że te same zmiany genetyczne, które spowodowały, że ludzki mózg jest unikatowy, powodują też, że jest bardziej neuroróżnorodny, mówi Starr.
« powrót do artykułu -
przez KopalniaWiedzy.pl
U ludzi naśladowanie przez osobę trzecią jest bardzo ważnym elementem nauczania norm społecznych i tradycji. Polega ono na obserwowaniu z zewnątrz interakcji dwóch osób i umiejętności naśladowania jednej z nich, mimo że samemu nie jest się przedmiotem tej interakcji. Ludzkie dzieci potrafią naśladować innych od urodzenia, jednak naśladowania przez osobę trzecią uczą się dopiero w 2. roku życia, gdy rozwinie się u nich zdolność do postrzegania perspektywy, czyli zdolność do rozumienia, że inni nie widzą tego samego, co one.
Ara szafirowa, podobnie jak wiele innych papug, żyje w złożonych grupach społecznych, a skład tych grup ulega częstym zmianom. To zaś powoduje potrzebę szybkiego integrowania nowych członków grupy i uczenia ich norm w niej obowiązujących. Dlatego naukowcy z Niemiec i Hiszpanii postanowili sprawdzić, czy u ary szafirowej występuje naśladowanie przez osobę trzecią.
Badacze z Instytutu Maxa Plancka i Comparative Cognition Research Station na Teneryfie prowadzili eksperymenty, podczas której ary obserwowały interakcję między badaczką a wytrenowaną wcześniej arą. Wytrenowany wcześniej ptak reagował w konkretny sposób na konkretne gesty człowieka, na przykład unosił prawą nogę w reakcji na podniesiony palec wskazujący człowieka. Bezpośrednio po obserwacji nietrenowane wcześniej papugi miały reagować na identyczne gesty człowieka. Grupę kontrolną stanowiły papugi, które nie obserwowały wcześniej żadnej interakcji. Badania wykazały, że papugi, które obserwowały interakcje z perspektywy osoby trzeciej, znacznie częściej wykonywały prawidłowe gesty na gesty człowieka i znacznie szybciej uczyły się odpowiednich zachowań. To pokazuje, że ary szafirowe są zdolne do nauki poprzez obserwacje interakcji innych osobników.
To znaczące badania, gdyż po raz pierwszy wykazaliśmy, że u gatunku innego niż ludzie istnieje naśladowanie przez osobę trzecią, mówi główna autorka badań, doktor Esha Haldar. Co prawda nasze odkrycie nie jest bezpośrednim potwierdzeniem, że papugi potrafią postrzegać perspektywę, ale sugeruje, że posiadają taką umiejętność, dodaje uczona.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W ciągu milionów lat u naszych przodków doszło do radykalnej zmiany miednicy, dzięki czemu my możemy poruszać się na dwóch nogach w postawie wyprostowanej. Przez długi czas szczegóły tej zmiany pozostawały tajemnicą, aż niedawno na łamach Nature naukowcy z USA, Wielkiej Brytanii i Irlandii opisali dwie zmiany genetyczne, które doprowadził do tej rewolucji.
Wykazaliśmy, że w tym zakresie doszło do całkowitej zmiany mechaniki. Nie ma tutaj analogii do żadnych innych naczelnych. Wyewoluowanie czegoś zupełnie nowego, przejście od płetw do nog czy pojawienie się skrzydeł nietoperzy z palców wymaga olbrzymich zmian w rozwoju. U ludzi doszło do takich samych masowych zmian w przypadku miednicy, mówi profesor Terence Capellini z Uniwersytetu Harvarda.
Od dawna wiadomo, że H. sapiens ma unikatową budowę miednicy. U naszych najbliższych krewniaków kości biodrowe są wysokie, wąskie i ustawione w kierunku przednio-tylnym, co pomaga w zakotwiczeniu dużych mięśni umożliwiających wspinaczkę po drzewach. U ludzi kości te obróciły się na boki i rozchyliły. Przyczepione do nich mięśnie umożliwiają przenoszenie ciężaru wyprostowanego ciała z jednej nogi na drugą.
Po analizie dziesiątków tkanek ludzkich płodów i muzealnych okazów naczelnych, naukowcy doszli do wniosku, że ewolucja miednicy naszych przodków przebiegała w dwóch głównych etapach. Najpierw płytka wzrostu uległa obróceniu o 90 stopni, dzięki czemu kości biodrowe rosły wszerz, a nie na wysokość, a później doszło do zmian harmonogramu tworzenia kości w życiu embrionalnym.
Na wczesnych etapach rozwoju płytka wzrostowa kości biodrowej człowieka formuje się – jak u innych naczelnych – według osi wzrostu przebiegającej od głowy do ogona. Jednak około 53. dnia rozwoju dochodzi do radykalnej zmiany. Płytki wzrostowe u ludzi obracają się prostopadle względem pierwotnej osi, co prowadzi do skrócenia i poszerzenia kości biodrowej.
Kolejną zmianą jest harmonogram tworzenia się kości. Zwykle powstają one wokół pierwotnego centralnego ośrodka kostnienia, w środkowej części kości. Jednak w przypadku miednicy kostnienie rozpoczyna się w tylnej części kości krzyżowej i rozprzestrzenia promieniście. Kostnienie wnętrza jest opóźnione o 16 tygodni w porównaniu z innymi naczelnymi, co pozwala zachować naszej miednicy swój wyjątkowych kształt w trakcie wzrostu. Miednica o takim kształcie, jaką mamy, pojawia się w 10. tygodniu życia płodowego.
Naukowcy zidentyfikowali ponad 300 genów, które biorą udział w utworzeniu się naszej wyjątkowej miednicy. Najważniejsze z nich to SOX9 i PTH1R, odpowiedzialne za zmianę kierunku wzrostu oraz RUNX2, który kontroluje zmianę kostnienia.
Zdaniem autorów badań, zmiany ewolucyjne umożliwiające nam pionową postawę, rozpoczęły się między 5 a 8 milionów lat temu od reorientacji płytki wzrostowej. Natomiast proces opóźnienia kostnienia pojawił się w ciągu ostatnich 2 milionów lat. Zmiany te trwały bardzo długo, a w ich przebiegu znaczenie miały np. takie wydarzenia jak pojawienie się dużego mózgu. Ewolucja musiała „wybrać” pomiędzy dwiema korzyściami - wąską miednicą umożliwiającą sprawne poruszanie się po drzewach, a szeroką, pozwalającą na urodzenie dziecka z dużym mózgiem.
Najstarsza skamieniała miednica, na której widać zachodzące zmiany w kierunku dwunożności i postawy wyprostowanej, należy etiopskiego Ardipiteka sprzed 4,4 milionów lat.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nikogo chyba nie trzeba przekonywać, jak ważny jest mikrobiom dla naszego zdrowia. A raczej mikrobiomy, bo w coraz większym stopniu odkrywamy znaczenie wszystkich mikroorganizmów występujących wewnątrz i na zewnątrz nas. Naukowcy z Michigan State University i Georgia State University poinformowali, że mikroorganizmy odgrywają ważną rolę we wczesnym rozwoju mózgu, szczególnie obszarów odpowiedzialnych za kontrolę stresu, zachowań społecznych i podstawowych funkcji organizmu. A skoro tak, to rodzi się podejrzenie, że współczesne techniki porodu, zmieniające mikrobiom matki lub wpływające na kontakt dziecka z nim, mogą wpływać na rozwój mózgu noworodka.
Pierwszy masowy bezpośredni kontakt mikroorganizmami mamy podczas porodu. Zostajemy skolonizowali zarówno przez mikrobiom z kanału rodnego matki, jak i przez mikroorganizmy z otoczenia. Dochodzi do tego w czasie, gdy nasze mózgi doświadczają poważnego przemodelowania. Uczeni już wcześniej donosili – na podstawie badań na modelu mysim – że mikroorganizmy te mogą wpływać na rozwój mózgu. Tym razem skupili się na jądrze przykomorowym podwzgórza, jednym z najważniejszych regionów w mózgu ssaków.
W ramach eksperymentów porównywali mózgi myszy urodzonych w standardowych warunkach z myszami urodzonymi w warunkach sterylnych. Okazało się, że u tych, które urodziły się w sterylnych warunkach występowało mniej komórek w jądrze przykomorowym podwzgórza, a zagęszczenie komórek było mniejsze. Zjawisko takie zaobserwowano nie tylko u mysich noworodków, ale i u dorosłych myszy. Wskazuje to nabywany przy porodzie mikrobiom długoterminowo może kształtować mózgi ssaków. Dodatkowo już podczas wcześniejszych badań naukowcy stwierdzili, że myszy urodzone w standardowych warunkach mają o 6% większe przodomózgowie, niż myszy urodzone w sterylnym środowisku. Teraz sprawdzili, czy efekt ten widoczny jest też u myszy dorosłych. Okazało się, że tak.
Takie wyniki badań każą zastanowić się, czy takie współczesne praktyki jak okołoporodowe podawanie antybiotyków – co zmienia mikrobiom matki – lub cesarskie cięcie, które wpływa na kontakt noworodka z mikrobiomem kanału rodnego, nie wpływa na późniejszy rozwój mózgu dziecka.
Podsumowując, nasze badania wykazały, że mikrobiom wpływa na rozwój jądra przykomorowego podwzgórza. Co więcej, może to wyjaśnić, dlaczego dorosłe myszy urodzone w sterylnych warunkach wykazują deficyty społeczne, mają podwyższony poziom stresu i niepokoju. Jądro przykomorowe podwzgórza decyduje o tych zachowaniach, stwierdzają naukowcy w artykule The microbiota shapes the development of the mouse hypothalamic paraventricular nucleus.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czy coś może łączyć zdrowe noworodki z osobami cierpiącymi na chorobę Alzhemera? Okazuje się, że tak. Jak donosi międzynarodowy zespół naukowy, u jednych i drugich występuje podniesiony poziom biomarkerów odpowiedzialnych za alzheimera. Mowa tutaj o fosforylowanym białku tau, a konkretnie o jego odmianie p-tau217. Jest ono od dawna wykorzystywane w testach diagnostycznych choroby Alzheimera. A noworodki mają go więcej niż cierpiący na alzheimera.
Zwiększenie poziomu p-tau217 we krwi ma być oznaką odkładania się w mózgu białka β-amyloidowego w postaci blaszek amyloidowych. Oczywistym jest, że u noworodków takie patologiczne zmiany nie występują, zatem u nich zwiększenie p-tau217 musi być odzwierciedleniem innego, całkowicie zdrowego, procesu.
Badacze ze Szwecji, Australii, Norwegii i Hiszpanii przeanalizowali próbki krwi ponad 400 osób. Były wśrod nich noworodki, wcześniaki, młodzi dorośli, starsi dorośli oraz osoby ze zdiagnozowaną chorobą Alzheimera. Okazało się, że najwyższy poziom p-tau217 występował u noworodków, a szczególnie u wcześniaków. W ciągu pierwszych miesięcy życia poziom ten spadał, aż w końcu stabilizował się na poziomie osób dorosłych.
Wydaje się, że o ile u osób z chorobą Alzheimera zwiększony poziom p-tau217 powiązany jest z tworzeniem się splątków tau, które uszkadzają mózg, to wydaje się, że u noworodków wspomaga on zdrowy rozwój mózgu, wzrost neuronów i ich łączenie się z innymi neuronami. Badacze zauważyli też związek z terminem porodu, a poziomem p-tau217. Im wcześniej się dziecko urodziło, tym wyższy miało poziom tego biomarkera, co może sugerować, że wspomaga on gwałtowny rozwój mózgu w trudnych warunkach wcześniactwa.
Najbardziej interesującym aspektem odkrycia jest przypuszczenie, że być może na początkowych etapach życia nasze mózgi mogą posiadać mechanizm chroniący przed szkodliwym wpływem białek tau. Jeśli zrozumiemy, jak ten mechanizm działa i dlaczego tracimy go z wiekiem, może uda się opracować nowe metody leczenia. Jeśli nauczymy się, w jaki sposób mózgi noworodków utrzymują tau w ryzach, być może będziemy w stanie naśladować ten proces, by spowolnić lub zatrzymać postępy choroby Alzheimera, mówi główny autor badań, Fernando Gonzalez-Ortiz.
Źródło: The potential dual role of tau phosphorylation: plasma phosphorylated-tau217 in newborns and Alzheimer’s disease, https://academic.oup.com/braincomms/article/7/3/fcaf221/8158110
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.