Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Psy wiedzą, jakie emocje malują się na ludzkiej twarzy

Rekomendowane odpowiedzi

Psy potrafią zrozumieć emocje kryjące się za ludzką mimiką. Jeśli pies przekręca głowę w lewą stronę, na twarzy człowieka malują się zapewne złość, strach lub szczęście. Gdy człowiek jest zaskoczony, psy mają za to tendencję do obracania głowy w prawo. Na widok człowieka odczuwającego negatywne emocje u psów rośnie też tętno.

Marcello Siniscalchi, Serenella d'Ingeo i Angelo Quaranta z Uniwersytetu im. Aldo Moro w Bari podkreślają, że przetwarzając ludzkie emocje, psy wykorzystują różne części mózgu.

Podczas eksperymentu Włosi pokazywali 26 jedzącym psom zdjęcia twarzy dorosłych osób: mężczyzny lub kobiety. Demonstrowano je jednocześnie w prawej i lewej połowie pola widzenia. Przedstawiały one jedną z sześciu podstawowych emocji: złość, strach, szczęście, smutek, zaskoczenie bądź wstręt (uwzględniono też neutralny wyraz twarzy).

Psy wykazywały silniejszą reakcję i aktywność serca, gdy pokazywano im pobudzające stany emocjonalne, takie jak strach czy złość. Gdy zobaczyły fotografie wyrażające te uczucia, nim wróciły do jedzenia, upływał dłuższy czas. Podwyższone tętno wskazywało, że w tych przypadkach czworonogi doświadczały silniejszego stresu.

Kiedy psy widziały ludzkie twarze wyrażające złość, strach i szczęście, obracały głowę w lewo. Przy zaskoczeniu, zwracały głowę w prawo, co wg autorów publikacji z pisma Learning & Behavior, oznacza, że postrzegały tę minę jako niezagrażającą, zrelaksowaną.

Wszystko wskazuje na to, że pobudzające, negatywne emocje są przetwarzane przez prawą półkulę, a bardziej pozytywne przez lewą - wyjaśnia Siniscalchi.

Uzyskane wyniki stanowią poparcie dla innych badań nad psami i pozostałymi ssakami, które demonstrowały, że prawa półkula mózgu odgrywa ważniejszą rolę w regulowaniu odśrodkowej impulsacji współczulnej do serca (to ważne dla kontroli reakcji walcz lub uciekaj).


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Badacze z MIT, University of Cambridge i McGill University skanowali mózgi ludzi oglądających filmy i dzięki temu stworzyli najbardziej kompletną mapę funkcjonowania kory mózgowej. Za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) naukowcy zidentyfikowali w naszej korze mózgowej 24 sieci połączeń, które pełnią różne funkcje, jak przetwarzanie języka, interakcje społeczne czy przetwarzanie sygnałów wizualnych.
      Wiele z tych sieci było znanych wcześniej, jednak dotychczas nie zbadano ich działania w warunkach naturalnych. Wcześniejsze badania polegały bowiem na obserwowaniu tych sieci podczas wypełniania konkretnych zadań lub podczas odpoczynku. Teraz uczeni sprawdzali ich działanie podczas oglądania filmów, byli więc w stanie sprawdzić, jak reagują na różnego rodzaju sceny. W neuronauce coraz częściej bada się mózg w naturalnym środowisku. To inne podejście, które dostarcz nam nowych informacji w porównaniu z konwencjonalnymi metodami badawczymi, mówi Robert Desimone, dyrektor McGovern Institute for Brain Research na MIT.
      Dotychczas zidentyfikowane sieci w mózgu badano podczas wykonywania takich zadań jak na przykład oglądanie fotografii twarzy czy też podczas odpoczynku, gdy badani mogli swobodnie błądzić myślami. Teraz naukowcy postanowili przyjrzeć się mózgowi w czasie bardziej naturalnych zadań: oglądania filmów.
      Wykorzystując do stymulacji mózgu tak bogate środowisko jak film, możemy bardzo efektywnie badań wiele obszarów kory mózgowej. Różne regiony będą różnie reagowały na różne elementy filmu, jeszcze inne obszary będą aktywne podczas przetwarzania informacji dźwiękowych, inne w czasie oceniania kontekstu. Aktywując mózg w ten sposób możemy odróżnić od siebie różne obszary lub różne sieci w oparciu o ich wzorce aktywacji, wyjaśnia badacz Reza Rajimehr.
      Bo badań zaangażowano 176 osób, z których każda oglądała przez godzinę klipy filmowe z różnymi scenami. W tym czasie ich mózgi były skanowane aparatem do rezonansu magnetycznego, generującym pole magnetyczne o indukcji 7 tesli. To zapewnia znacznie lepszy obraz niż najlepsze komercyjnie dostępne aparaty MRI. Następnie za pomocą algorytmów maszynowego uczenia analizowano uzyskane dane. Dzięki temu zidentyfikowali 24 różne sieci o różnych wzorcach aktywności i zadaniach.
      Różne regiony mózgu konkurują ze sobą o przetwarzanie specyficznych zadań, gdy więc mapuje się je z osobna, otrzymujemy nieco większe sieci, gdyż ich działanie nie jest ograniczone przez inne. My przeanalizowaliśmy wszystkie te sieci jednocześnie podczas pracy, co pozwoliło na bardziej precyzyjne określenie granic każdej z nich, dodaje Rajimehr.
      Badacze opisali też sieci, których wcześniej nikt nie zauważył. Jedna z nich znajduje się w korze przedczołowej i wydaje się bardzo silnie reagować na bodźce wizualne. Sieć ta była najbardziej aktywna podczas przetwarzania scen z poszczególnych klatek filmu. Trzy inne sieci zaangażowane były w „kontrolę wykonawczą” i były najbardziej aktywne w czasie przechodzenia pomiędzy różnymi klipami. Naukowcy zauważyli też, że były one powiązane z sieciami przetwarzającymi konkretne cechy filmów, takie jak twarze czy działanie. Gdy zaś taka powiązana sieć, odpowiedzialna za daną cechę, była bardzo aktywna, sieci „kontroli wykonawczej” wyciszały się i vice versa. Gdy dochodzi do silnej aktywacji sieci odpowiedzialnej za specyficzny obszar, wydaje się, że te sieci wyższego poziomu zostają wyciszone. Ale w sytuacjach niepewności czy dużej złożoności bodźca, sieci te zostają zaangażowane i obserwujemy ich wysoką aktywność, wyjaśniają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Neurolog Carina Heller poddała się w ciągu roku 75 badaniom rezonansem magnetycznym, by zebrać dane na temat wpływu pigułek antykoncepcyjnych na mózg. Pierwszą pigułkę antykoncepcyjną dopuszczono do użycia w USA w 1960 roku i już po dwóch latach przyjmowało ją 1,2 miliona Amerykanek. Obecnie z pigułek korzysta – z różnych powodów – około 150 milionów kobiet na całym świecie, co czyni je jednymi z najczęściej używanych leków. I chociaż generalnie są one bezpiecznie, ich wpływ na mózg jest słabo poznany.
      Dlatego też Heller postanowiła sprawdzić to na sobie. Zwykle bowiem eksperymentalne obrazowanie mózgu z wykorzystaniem MRI prowadzone jest na niewielkich grupach, a każda osoba poddawana jest badaniu raz lub dwa razy. Takim badaniom umykają codzienne zmiany w działaniu czy morfologii mózgu.
      Pani Heller najpierw pozwoliła przeskanować swój mózg 25 razy w ciągu 5 tygodni. Rejestrowano wówczas zmiany zachodzące podczas jej naturalnego cyklu. Klika miesięcy później zaczęła brać pigułki antykoncepcyjne i po trzech miesiącach poddała się kolejnym 25 skanom w ciągu 5 tygodni. Wkrótce po tym przestała brać pigułki, odczekała 3 miesiąca i została poddana ostatnim 25 skanom w 5 tygodni. Po każdym skanowaniu pobierano jej też krew do badań oraz wypełniała kwestionariusz dotyczący nastroju.
      Heller zaprezentowała wstępne wyniki swoich badań podczas dorocznej konferencji Towarzystwa Neuronauk. Uczona zauważyła, że w trakcie naturalnego cyklu dochodzi do regularnych zmian w objętości mózgu i liczbie połączeń pomiędzy różnymi regionami. W czasie brania pigułek objętość mózgu była nieco mniejsza, podobnie jak liczba połączeń. Po odstawieniu pigułek jej mózg w większości powrócił do naturalnego cyklu zmian.
      Uczona planuje też porównać wyniki swoich badań MRI z wynikami badań kobiety z endometriozą, niezwykle bolesną, niszczącą organizm i życie chorobą, która jest jedną z głównych przyczyn kobiecej niepłodności. Uczona chce sprawdzić, czy zmiany poziomu hormonów w mózgu mogą mieć wpływ na rozwój choroby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Choroba Alzheimera niszczy mózg w dwóch etapach, ogłosili badacze z amerykańskich Narodowych Instytutów Zdrowia. Ich zdaniem pierwszy etap przebiega powoli i niezauważenie, zanim jeszcze pojawią się problemy z pamięcią. Wówczas dochodzi do uszkodzeń tylko kilku typów wrażliwych komórek. Etap drugi jest znacznie bardziej niszczący i w nim dochodzi do pojawienia się objawów choroby, szybkiej akumulacji blaszek amyloidowych, splątków i innych cech charakterystycznych alzheimera.
      Jednym z problemów związanych z diagnozowaniem i leczeniem choroby Alzheimera jest fakt, że do znacznej części szkód dochodzi na długo zanim pojawią się objawy. Możliwość wykrycia tych szkód oznacza, że po raz pierwszy możemy obserwować to, co dzieje się w mózgu chorej osoby na najwcześniejszych etapach choroby. Uzyskane przez nas wyniki w znaczący sposób zmienią rozumienie, w jaki sposób choroba uszkadza mózg i ułatwią opracowanie nowych metod leczenia, mówi doktor Richar J. Hodes, dyrektor Narodowego Instytutu Starzenia Się.
      Badacze przeanalizowali mózgu 84 osób i stwierdzili, że uszkodzenie na wczesnym etapie choroby neuronów hamujących może być tym czynnikiem, który wyzwala całą kaskadę reakcji prowadzących do choroby.
      Badania potwierdziły też wcześniejsze spostrzeżenia dotyczące alzheimera. Naukowcy wykorzystali zaawansowane narzędzia do analizy genetycznej, by bliżej przyjrzeć się komórkom w zakręcie skroniowym środkowym, gdzie znajdują się ośrodki odpowiedzialne za pamięć, język i widzenie. Obszar ten jest bardzo wrażliwy na zmiany zachodzące w chorobie Alzheimera.
      Porównując dane z analizowanych mózgów z danymi z mózgów osób, które cierpiały na alzheimera, naukowcy byli w stanie odtworzyć linię czasu zmian zachodzących w komórkach i genach w miarę rozwoju choroby.
      Wcześniejsze badania sugerowały, że do uszkodzeń dochodzi z kilkunastu etapach charakteryzujących się coraz większą liczbą umierających komórek, zwiększającym się stanem zapalnym i akumulacją białka w postaci blaszek amyloidowych i splątków. Z nowych badań wynika, że występują jedynie dwa etapy, a do wielu uszkodzeń dochodzi w drugim z nich i to wówczas pojawiają się widoczne objawy.
      W pierwszej, wolno przebiegającej ukrytej fazie, powoli gromadzą się blaszki, dochodzi do aktywowania układu odpornościowego mózgu, osłonki mielinowej oraz śmierci hamujących neuronów somatostatynowych. To ostatnie odkrycie jest zaskakujące. Dotychczas uważano bowiem, że szkody w alzheimerze są powodowane głównie poprzez uszkodzenia neuronów pobudzających, które aktywują komórki, a nie je uspokajają. W opublikowanym na łamach Nature artykule możemy zapoznać się z hipotezą opisującą, w jaki sposób śmierć neuronów somatostatynowych może przyczyniać się do rozwoju choroby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rekonstrukcja zasiedlania Balearów przez ludzi nie jest łatwa ze względu na skromny materiał archeologiczny. Dotychczas przyjmowano, że pierwsi ludzie pojawili się na wyspach około 4400 lat temu. Teraz jednak naukowcy z University of South Florida, rumuńskiego Uniwersytetu Babeșa i Bolyaia, Uniwersytetu Harvarda oraz Universitat de les Illes Balears stwierdzili – na podstawie badań zatopionego kamiennego mostu – że ludzie mieszkali na Balearach co najmniej 5600, a może nawet wcześniej niż 6000 lat temu.
      Majorka, największa wyspa Balearów, była jedną z najpóźniej zasiedlonych wysp. Od dawna jednak trwają spory odnośnie daty przybycia ludzi na Majorkę. Już 40 lat temu datowano fragment kości, uznany za ludzki, na 7000 lat, a dwa lata później jedno ze znalezisk, mające świadczyć o obecności ludzi, datowano na 9000 lat. Jednak specjaliści wyrażali wątpliwości odnośnie tych prac. Sugerowali, że fragment kości należał do bydła, a drugi z datowanych przedmiotów pochodzi z warstwy, która jest źle zachowana, a jej istnienia nie można jednoznacznie powiązać z obecnością człowieka.
      Bogdan P. Onac i jego zespół postanowili rozwiązać kwestię obecności człowieka na Majorce na podstawie... różnic w poziomie morza. Przez cztery lata gromadzili niezbędne dane, badając poziom morza na innych wyspach oraz ślady, jakie pozostawił wzrost poziomu wód. Posłużyło im to do badań zatopionego kamiennego mostu, który znajduje się w Jaskini Genovesa na Majorce. Naukowcy przyjrzeli się jasno zabarwionemu pasowi widocznemu na kamieniach oraz warstwy kalcytu, który osadzał się na kamieniach. Warstwy te, nacieki krasowe, powstają w jaskiniach w wyniku wytrącania się substancji mineralnej z roztworu wodnego.
      Naukowcy zrekonstruowali lokalny poziom morza w przeszłości, przeanalizowali nacieki oraz jasny pas na skałach tworzących most i stwierdzili, że most mógł zostać zbudowany nawet 6000 lat temu. Jasny pas oraz nacieki powstały, gdy poziom morza był stały. To wskazuje, że most powstał co najmniej 5600 lat temu. Był używany prawdopodobnie przez 400-500 lat zanim wzrost poziomu morza nie spowodował, że znalazł się pod wodą.
      Naukowcy znaleźli też kości wymarłego gatunku kozy Myotragus balearicus oraz ceramikę. Na tej podstawie wysunęli przypuszczenie, że ludzie mieszkali w jaskini w pobliżu wejścia do niej, a most nad znajdującym się w jaskini jeziorem zbudowali, by dostać się na drugą stronę. Potrzeba, dla której chcieli przekroczyć jezioro, nie jest jasna. Być może chronili się tam w razie niebezpieczeństwa, może było tam miejsce odbywania rytuałów lub też schowek na żywność, zapewniający niższą temperaturę niż okolice wejścia dla jaskini, mówi Onac. Uczony przypomina, że na Majorce znaleziono dotychczas pozostałości po niewielkich kamiennych domach oraz innych kamiennych strukturach, datowane na 2000–4500 lat temu. Być może most był prekursorem bardziej złożonych budowli.
      Naukowcy wciąż nie wiedzą, dlaczego Majorka została zasiedlona później niż inne duże wyspy. Być może zdecydował o tym jej niegościnny klimat, ziemia niezbyt nadająca się do uprawy oraz brak – poza rybami i wspomnianym gatunkiem kozy – zasobów naturalnych. Inne wyspy więcej oferowały osadnikom.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Z jakiego powodu pojawił się duży mózg? Objętość mózgu przedstawicieli taksonu Australopithecine, z którego prawdopodobnie wyewoluował rodzaj Homo, była około 3-krotnie mniejsza, niż mózgu H. sapiens. Tkanka mózgowa jest bardzo wymagająca pod względem metabolicznym, wymaga dużych ilości energii. Co spowodowało, że w pewnym momencie zaczęła się tak powiększać? Najprawdopodobniej było to związane z dietą, a jedna z najbardziej rozpowszechnionych hipotez mówi, że to opanowanie ognia dało naszym przodkom dostęp do większej ilości kalorii. Jednak hipoteza ta ma poważną słabość.
      Francusko-amerykański zespół opublikował na lamach Communications Biology artykuł pod tytułem Fermentation technology as a driver of human brain expansion, w którym stwierdza, że to nie ogień, a fermentacja żywności pozwoliła na pojawienie się dużego mózgu. Hipoteza o wpływie ognia ma pewną poważną słabość. Otóż najstarsze dowody na używanie ognia pochodzą sprzed około 1,5 miliona lat. Tymczasem mózgi naszych przodków zaczęły powiększać się około 2,5 miliona lat temu. Mamy więc tutaj różnicę co najmniej miliona lat. Co najmniej, gdyż zmiana, która spowodowała powiększanie się mózgu musiała pojawić na znacznie wcześniej, niż mózg zaczął się powiększać.
      Katherina L. Bryant z Uniwersytetu Aix-Marseille we Francji, Christi Hansen z Hungry Heart Farm and Dietary Consulting oraz Erin E. Hecht z Uniwersytetu Harvarda uważają, że tym, co zapoczątkowało powiększanie się mózgu naszych przodków była fermantacja żywności. Ich zdaniem pożywienie, które przechowywali, zaczynało fermentować, a jak wiadomo, proces ten zwiększa dostępność składników odżywczych. W ten sposób pojawił się mechanizm, który – dostarczając większej ilości składników odżywczych – umożliwił zwiększanie tkanki mózgowej.
      Uczone sądzą, że do fermentacji doszło raczej przez przypadek. To mógł być przypadkowy skutek uboczny przechowywania żywności. I, być może, z czasem tradycje czy przesądy doprowadziły do zachowań, które promowały fermentowaną żywność, a fermentację uczyniły bardziej stabilną i przewidywalną, dodaje Hecht.
      Uzasadnieniem takiego poglądu może być fakt, że ludzkie jelito grupe jest krótsze niż u innych naczelnych, co sugeruje, iż jest przystosowane do trawienia żywności, w której składniki zostały już wcześniej wstępnie przetworzone. Ponadto fermentacja jest wykorzystywana we wszystkich kulturach.
      Zdaniem uczonych, w kontekście tej hipotezy pomocne byłoby zbadanie reakcji mózgu na żywność fermentowaną i niefermentowaną oraz badania nad receptorami smaku i węchu, najlepiej wykonane za pomocą jak najstarszego DNA.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...