Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Potężny rozbłysk z brązowego karła
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Astronomowie odkryli brązowego karła, którego powierzchnia jest znacznie bardziej gorąca niż powierzchnia Słońca. Tymczasem brązowe karły nie są gwiazdami. To obiekty gwiazdopodobne, których masa jest zbyt mała, by mógł w nich zachodzić proces przemiany wodoru w hel. Mają masę co najmniej 13 razy większą od Jowisza. Od olbrzymich planet różnie je to, że są zdolne do fuzji deuteru. Po jakimś czasie proces ten zatrzymuje się. Najgorętsze i najmłodsze brązowe karły osiągają temperaturę ok. 2500 stopni Celsjusza. Później stygną. Temperatura najstarszych i najmniejszych z nich to około -26 stopni.
W najnowszym numerze Nature Astronomy naukowcy opisali brązowego karła, którego temperatura powierzchni sięga 7700 stopni Celsjusza. To znacznie więcej, niż 5500 stopni, jaką ma temperatura Słońca. Nic więc dziwnego, że gdy na początku XXI wieku po raz pierwszy zauważono ten obiekt, omyłkowo go sklasyfikowano. Dopiero powtórna analiza danych przeprowadzona przez Na'amę Hallakoun z izraelskiego Instytutu Naukowego Weizmanna i jej zespół pokazały, z czym mamy do czynienia.
Nasz brązowy karzeł ma tan olbrzymią temperaturę, gdyż obiega po bardzo ciasnej orbicie białego karła WD 0032-317. To właśnie jego promieniowanie ogrzewa brązowego karła do tak olbrzymich temperatur. Brązowy karzeł znajduje się w obrocie sychronicznym wokół WD 0032-317, co oznacza, że jest cały czas zwrócony w jej kierunku tylko jedną stroną. To zaś powoduje olbrzymie różnice temperatur. Strona nocna brązowego karła jest aż o 6000 stopni Celsjusza chłodniejsza niż strona dzienna.
Gdy układ ten po raz pierwszy zaobserwowano przed dwoma dziesięcioleciami, sądzono, że jest to układ podwójny dwóch białych karłów. Jednak gdy Hallakoun i jej zespół przyjrzeli się danym, zauważyli coś, co kazało im ponownie przyjrzeć się temu układowi. Mogli obserwować go rejestrując linie emisji pochodzące z dziennej strony brązowego karła. Dane były tak zaskakujące, że początkowo naukowcy sądzili, że nieprawidłowo je opracowali. Później zauważyli, że tak naprawdę obserwują układ składający się z białego karła, wokół którego krąży brązowy karzeł. Uczeni, którzy przed 20 laty zaobserwowali ten system, nie zauważyli tego, gdyż obserwowali nocną stronę brązowego karła.
Autorzy odkrycia mówią, że przyda się ono do badania ultragorących Jowiszów, czyli olbrzymich planet krążących blisko swojej gwiazdy. Znalezienie takich planet nastręcza na tyle dużo trudności, że obecnie znamy pojedyncze planety tego typu. Dlatego też astronomowie nie od dzisiaj myślą o wykorzystaniu brązowych karłów krążących blisko gwiazd w roli modelu do badań ultragorących Jowiszów. Brązowe karły łatwiej jest obserwować.
Układ WD 0032-317 rzuci też światło na ewolucję gwiazd. Na podstawie obecnie obowiązujących modeli naukowcy stwierdzili, że brązowy karzeł ma kilka miliardów lat. Z kolei niezwykle wysoka temperatura białego karła WD 0032-317 wskazuje, że istnieje on zaledwie od około miliona lat. Co więcej, ma on masę zaledwie 0,4 mas Słońca. Zgodnie z obowiązującymi teoriami, biały karzeł o tak małej masie nie może istnieć. Ewolucja gwiazdy do takiego stanu musiałaby bowiem trwać dłużej, niż istnieje wszechświat.
Dlatego naukowcy sądzą, że brązowy karzeł przyspieszył ewolucję towarzyszącej mu gwiazdy. Hallakoun i jej zespół uważają, że przez pewien czas oba obiekty znajdowały się we wspólnej otoczce gazowej. Pojawiła się ona, gdy gwiazda macierzysta zmieniła się w czerwonego olbrzyma i pochłonęła brązowego karła. Z czasem wspólna otoczka została usunięta, w czym swój udział miał brązowy karzeł, co doprowadziło do szybszego pojawienia się białego karła.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Western University odkryli trzy najszybciej obracające się brązowe karły, obiekty zwane czasem nieudanymi gwiazdami. To masywne obiekty znajdujące się pomiędzy planetami a gwiazdami. Są bardziej masywne niż planety, ale zbyt mało masywne by mogły zachodzić w nich przemiany wodoru w hel. Teraz Megan Tannock i Stanimir Metchey informują o zidentyfikowaniu brązowych karłów, które obracają się blisko limitu prędkości, powyżej którego mogą zostać rozerwane.
Odkryte przez Kanadyjczyków obiekty mają średnicę podobną do Jowisza, ale są od niego od 40 do 70 razy bardziej masywne. Każdy z nich wykonuje pełny obrót w ciągu zaledwie godziny. Dotychczas najszybszy znany brązowy karzeł obracał się w ciągu 1,4 godziny. Jowiszowi zaś pełen obrót zajmuje 10 godzin. Z dokonanych obliczeń wynika, że prędkość obrotowa wspomnianych karłów wynosi aż 100 km/s czyli 360 000 km/h. Dla porównania, Jowisz obraca się z prędkością 12,6 km/s (45 360 km/h).
Wydaje się, że dotarliśmy do granicy prędkości obrotowej brązowych karłów, mówi Tannock. Pomimo intensywnych poszukiwań naukowcom nie udało się dotychczas znaleźć szybciej obracających się brązowych karłów. Szybszy obrót mógłby spowodować ich rozerwanie.
Wspomniane brązowe karły zostały odkryte przez teleskop 2MASS, który działał do 2001 roku. Kanadyjczycy dokonali pomiarów prędkości karłów wykorzystując dane z Teleskopu Kosmicznego Spitzera (zakończył on swoją misję w styczniu 2020), a następnie potwierdzli je za pomocą naziemnych Gemini North i Magellan.
Brązowe karły, podobnie jak gwiazdy i planety, obracają się wokół własnej osi. W miarę jak stygną i się kurczą, obracają się coraz szybciej. Dotychczas udało się zmierzyć prędkość obrotową około 80 tego typu obiektów. Są wśród nich takie, które wykonują pełny obrót poniżej 2 godzin, jak i takie, które potrzebują na to kilkudziesięciu godzin.
Przy takiej różnorodności tempa obrotu naukowców zdziwił fakt, że trafili na trzy obiekty obracają się niemal z tą samą prędkością około 1 obrotu na godzinę. Właściwości tej nie można w tej chwili łączyć ze wspólnymi znanymi cechami fizycznymi. Jeden z karłów jest gorący, drugi zimy, a temperatura trzeciego mieści się pomiędzy tymi dwoma. Różnica temperatur wskazuje zaś, że są w różnym wieku. Uczeni nie wykluczają, że to przypadkowa zbieżność. Karły niemal osiągnęły maksymalną prędkość obrotu. Jeśli ją przekroczą, zostaną rozerwane przez siły odśrodkowe.
Specjaliści uważają, że brązowe karły składają się głównie z wodoru i helu. Są też znacznie bardziej gęste niż olbrzymie planety. Wodór w jądrach brązowych karłów jest poddany tak wysokiemu ciśnieniu, że zachowuje się jak metal. Występują w nim swobodne elektrony. Zmieniają one sposób dystrybucji ciepła we wnętrzu karła, a wraz z bardzo szybkim obrotem może to wpływać na rozkład w nim masy. Stan wodoru czy jakiegokolwiek innego gazu poddanego tak wielkim ciśnieniom to dla nas zagadka. Nawet w najbardziej zaawansowanych laboratoriach trudno jest uzyskać taki stan materii, stwierdza Metchev.
Obecne modele mówią, że maksymalna prędkość obrotowa brązowego karła to 50 do 80 procent szybciej niż 1 obrót na godzinę. Być może jednak modele te nie oddają całego obrazu. Może istnieć nieznanym nam czynnik, który powoduje, że brązowe karły nie mogą obracać się szybciej niż te, które zaobserwowaliśmy, dodaje Metchev.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Od wystrzelenia Voyagerów minęło ponad 40 lat, a sondy wciąż dokonują odkryć naukowych. Fizycy z University of Iowa poinformowali, że instrumenty na obu Voyagerach zarejestrowały elektrony przyspieszone przez fale uderzeniowe pochodzące z dużych rozbłysków na Słońcu. Elektrony przemieszczają się niemal z prędkością światła, około 670 razy szybciej niż fala uderzeniowa, która je przyspieszyła.
Po nagłym przyspieszeniu elektronów zarejestrowano oscylacje fal plazmy wywołane elektronami o niskich energiach, które dotarły do czujników Voyagerów kilka dni po przyspieszonych elektronach. W końcu, miesiąc później, Voyagery zarejestrowały samą falę uderzeniową.
Fale uderzeniowe pochodziły z koronalnych wyrzutów masy. Przemieszczają się one z prędkością około 1 600 000 km/h. Nawet tak szybko poruszająca się fala uderzeniowa potrzebuje znacznie ponad roku, by dotrzeć do Voyagerów.
Zidentyfikowaliśmy elektrony, które zostały odbite i przyspieszone przez międzygwiezdne fale uderzeniowe rozprzestrzeniające się na zewnątrz od wysoce energetycznego wydarzenia na Słońcu. To nowy mechanizm, mówi współautor badań, emerytowany profesor Don Gurnett.
Dzięki temu odkryciu fizycy lepiej będą mogli zrozumieć zależność fal uderzeniowych i promieniowania kosmicznego pochodzącego z rozbłysków słonecznych czy eksplodujących gwiazd. Jest to ważne np. z punktu planowania długotrwałych misji załogowych, podczas których astronauci będą narażeni na znacznie wyższe dawki promieniowania niż to, czego doświadczamy na Ziemi.
Fizycy sądzą, że te nagle przyspieszone elektrony w medium międzygwiezdnym są odbijane od wzmocnionych linii pola magnetycznego na krawędzi fali uderzeniowej i przyspieszane przez ruch tej fali. Odbite elektrony poruszają się po spirali wzdłuż międzygwiezdnych linii pola magnetycznego, przyspieszając w miarę oddalania się od czoła fali uderzeniowej.
Sam pogląd, że fale uderzeniowe przyspieszają cząstki nie jest niczym nowym. Zasadniczą sprawą jest tutaj mechanizm oddziaływania. My odkryliśmy go w zupełnie nowym środowisku – przestrzeni międzygwiezdnej – które jest całkowicie różne od wiatru słonecznego, gdzie takie procesy były już obserwowane, dodaje Gurnett.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz pierwszy udało się zmierzyć prędkość wiatrów wiejących na powierzchni brązowego karła. Dokonali tego astronomowie, którzy wykorzystali Karl G. Jansky Very Large Array (VLA) oraz Teleskop Kosmiczny Spitzera.
Opierając się na tym, co wiemy o wielkich planetach, takich jak Jowisz czy Saturn, naukowcy pod kierunkiem Katelyn Allers z Bucknell University zdali sobie sprawę z faktu, że prawdopodobnie uda się zmierzyć prędkość wiatru na powierzchni brązowego karła, wykorzystując w tym celu VLA i Spitzera. Gdy doszliśmy do takiego wniosku, zdziwiliśmy się, że nikt dotychczas nie przeprowadził takich badań, mówi Allers.
Naukowcy wzięli na cel brązowego karła 2MASS J10475385+2124234. Ma on średnicę mniej więcej Jowisza, ale jest 40-krotnie bardziej masywny. Obiekt znajduje się w odległości około 34 lat świetlnych od Ziemi.
Zauważyliśmy, że okres obrotowy Jowisza obserwowany za pomocą radioteleskopów jest inny niż okres obrotowy obserwowany w świetle widzialnym i w podczerwieni, mówi Allers. Jak wyjaśnia uczona, dzieje się tak, gdyż fale radiowe wchodzą w interakcje z polem magnetycznym planety, natomiast emisja w podczerwieni pochodzi z górnych warstw atmosfery. Wnętrze planety, jej źródło pola magnetycznego, obraca się wolniej niż atmosfera. A różnica wynika z prędkości wiatrów.
Stwierdziliśmy, że takie samo zjawisko powinniśmy zaobserwować w przypadku brązowych karłów. Postanowiliśmy więc przyjrzeć się okresowi obrotowemu czerwonego karła zarówno za pomocą radioteleskopu, jak i w podczerwieni, powiedziała Johanna Vos z Amerykańskiego Muzeum Historii Naturalnej.
Obserwacje rzeczywiście wykazały, że atmosfera brązowego karła obrana się szybciej niż jego wnętrze. A różnica jest znacznie większa, niż w przypadku Jowisza. O ile bowiem prędkość wiatru wiejącego na Jowiszu wynosi około 370 km/h, to dla brązowego karła obliczono ją na około 2300 km/h. Obliczenia te zgodne są z teorią i symulacjami, przewidującymi wyższe prędkości wiatru na brązowych karłach, mówi Allers.
Technika wykorzystana przez zespół Allers może zostać użyta do badania prędkości wiatrów na planetach pozasłonecznych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Małe gwiazdy świecą zwykle zbyt słabo, by można było je obserwować. Jednak rozbłysk zarejestrowany w 2017 roku zwiększył jasność jednej z takich gwiazd aż 10 000 razy.
Trzynastego sierpnia 2017 roku teleskop Next Generation Transit Survey (NGTS) zaobserwował potężny rozbłysk z gwiazdy niewiele większej od Jowisza. Siłę rozbłysku oceniono na 80 miliardów megaton TNT. Była więc ona 10-krotnie potężniejsza, niż najsilniejszy znany nam rozbłysk na Słońcu.
ULAS J224940.13-011236.9 to karzeł należący do typu widmowego L, obejmującego najsłabiej świecące gwiazdy. To zimne małe obiekty, znajdując się na granicy uznania ich za gwiazdy. Tym bardziej niezwykłe jest zaobserwowanie silnego rozbłysku z takiego obiektu.
Każde obniżenie masy tej gwiazdy oznaczałoby zakwalifikowanie jej jako brązowego karła, mówi główny autor badań James Jackman. Brązowe karły to obiekty zbyt duże, by uznać je za planety, a zbyt małe, by mogły podtrzymać fuzję jądrową, a tym samym być uznane za gwiazdy. Większość teleskopów, w tym NGTS, nie jest w stanie zauważyć ULAS J224940.13-011236.9. jednak rozbłysk wszystko zmienił, zwiększając jasność gwiazdy aż 10 000 razy. Naukowcy mieli olbrzymie szczęście, że NGTS był akurat skierowany we właściwą stronę. Rozbłysk trwał bowiem zaledwie 9,5 minuty.
Silne rozbłyski z małych gwiazd były już obserwowane, jednak są to rzadkie zjawiska. ULAS J224940.13-011236.9 to drugi karzeł typu L, którego rozbłysk udało się zarejestrować z Ziemi i szósty karzeł L, którego rozbłysk w ogóle zarejestrowano. Jakby tego było mało, od razu zauważyliśmy rozbłysk silniejszy niż z jakiekolwiek innej tak chłodnej gwiazdy. Dotychczas nie było wiadomo, że tak małe chłodne obiekty posiadają energię wystarczającą na wygenerowanie tak potężnego rozbłysku.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.