Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Wystarczą zaledwie 24 godziny, by w preadipocytach zmienić epigenetyczny przepis na to, jak prawidłowo zostać dojrzałą komórką tłuszczową. Zmiany zachodzą pod wpływem nasyconego kwasu tłuszczowego - kwasu palmitynowego - i/lub czynnika martwicy nowotworu (TNF-α).

Kwas palmitynowy i TNF-α zaburzają rozwój komórki, przez co na późniejszych etapach życia staje się ona dysfunkcjonalnym adipocytem. Takie reprogramowanie zachodzi zwłaszcza u osób otyłych z cukrzycą typu 2.

Z kwasem palmitynowym stykamy się w jedzeniu. Obfitują w niego nabiał, mięso czy olej palmowy. TNF-α to cytokina związana z procesem zapalnym. U otyłych pacjentów występuje więcej TNF-α, bo otyłość powoduje stan zapalny.

Nasze wyniki pokazują, jak ważne dla przyszłego zdrowia metabolicznego są prawidłowa dieta i tryb życia. W dużym stopniu mogą one zapobiec reprogramowaniu komórek prekursorowych. Mamy nadzieję, że kiedyś uzyskane przez nas wyniki pozwolą opracować nowe strategie odwracania tego procesu [...] - podkreśla Romain Barrès z Uniwersytetu Kopenhaskiego.

Autorzy publikacji z International Journal of Obesity podkreślają, że kilka wcześniejszych badań epigenetycznych sugerowało, że ludzkie komórki prekursorowe pamiętają przeszłe "ekspozycje środowiskowe". Dotąd jednak nikt nie umiał wskazać czynników wpływających na reprogramowanie preadipocytów ani stwierdzić, z jaką prędkością zachodzi ten proces.

Duńczycy zebrali tkankę tłuszczową 43 pacjentów przechodzących planowe operacje. Piętnastu pacjentów było szczupłych, 14 otyłych, a 14 miało zarówno otyłość, jak i cukrzycę typu 2.

Okazało się, że komórki prekursorowe 3. grupy podlegały przeprogramowaniu i dlatego nie mogły działać jak prawidłowe, zdrowe adipocyty. Wystawiając przez dobę zdrowe preadipocyty na oddziaływanie 2 czynników, naukowcy odtwarzali reprogramowanie obserwowane w komórkach diabetyków.

Na razie naukowcy nie wiedzą, czy przeprogramowanie można cofnąć. Wiemy, że komórki prekursorowe mogą być reprogramowane w taki sposób, że na ostatnim etapie rozwoju ich funkcjonowanie jest upośledzone. Dotąd nikt nie odkrył, jak odwrócić ten proces. To jednak obiecująca dziedzina badań.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naturalnie występująca molekuła pozwala równie skutecznie jak semaglutyd (Ozempic) zwalczać nadwagę, a jej stosowanie wiąże się z mniejszą liczbą skutków ubocznych. BRP została odkryta przez naukowców ze Stanford Medicine za pomocą algorytmów sztucznej inteligencji. Badania na myszach i świniach pokazały, że jej skuteczność jest porównywalna z Ozempikiem, jednocześnie zaś u zwierząt występowało mniej takich skutków ubocznych jak nudności, dreszcze i znaczący spadek masy mięśniowej.
      BRP działa poprzez osobny, ale podobny do wykorzystywanego przez Ozempic, szlaku metabolicznego. Aktywuje różne neurony w mózgu, być może bardziej precyzyjnie wpływając na redukcję masy ciała. Receptory, na które działa semaglutyd, znajdują się w mózgu, jelitach, trzustce i innych tkankach. Dlatego Ozempic działa szeroko, między innymi spowalniając przemieszczanie się pożywienia przez układ pokarmowy i obniżając poziom cukru we krwi. W przeciwieństwie do niego, BRP wydaje się działać specyficznie na podwzgórze, które reguluje apetyt i metabolizm, mówi doktor Katrin Svensson.
      Badania były możliwe dzięki wykorzystaniu algorytmów sztucznej inteligencji, do przeanalizowania dziesiątków protein zwanych prohormonami. Prohormony to nieaktywne biologicznie molekuły, które stają się aktywne, gdy zostaną pocięte przez inne proteiny na peptydy. Niektóre z tych peptydów działają wówczas jak hormony, regulując złożone procesy biologiczne, w tym metabolizm.
      Zamiast ręcznie izolować proteiny i peptydy, a następnie technikami takimi jak spektrometria mas identyfikować setki tysięcy peptydów, naukowcy opracowali algorytm Peptide Predictor. Przeprowadził on analizę, w wyniku której powstała lista zaledwie 373 prohormonów, które warto było sprawdzić pod kątem wywieranych przezeń skutków biologicznych.
      Algorytm był absolutnie kluczowym narzędziem dla naszych badań, mówi Svensson. Peptide Predictor przewidział, że konwertaza prohormonów-1/3 (PC1/3) katalizuje powstanie 2683 peptydów z 373 protein. Badacze skupili się na 100 peptydach, które prawdopodobnie mogły być biologicznie aktywne w mózgu. W ten sposób odkryli niewielki peptyd BRP o silnym działaniu.
      Gdy zbadali go na myszach i miniaturowych świniach (które lepiej niż myszy odpowiadają ludzkiemu metabolizmowi i zwyczajom żywieniowym) odkryli, że domięśniowe podanie BRP przed jedzeniem zmniejsza przyjmowanie pokarmu nawet o 50% przez kolejną godzinę. Otyłe myszy, którym przez dwa tygodnie raz dziennie podawano BRP straciły na wadze 3 gramy – utrata dotyczyła niemal wyłącznie tkanki tłuszczowej – podczas gdy myszy z grupy kontrolnej przytyły 3 gramy. U zwierząt, którym podawano BRP stwierdzono też lepszą tolerancję glukozy i insuliny.
      Badania behawioralne na myszach i świniach nie stwierdziły żadnych zmian w zachowaniu, poruszaniu się, spożyciu wody czy wydalaniu. Naukowcy poszukują teraz receptorów, z którym łączy się BRP, by dokładniej zrozumieć jego działanie. Szukają też sposobów na przedłużenie czasu działania peptydu, by nie trzeba było podawać go codziennie.
      Brak efektywnych leków na otyłość to problem znany od dekad. Nic, co testowaliśmy wcześniej, nawet nie zbliżało się efektywnością do semaglutydu. Nie możemy się doczekać, by sprawdzić, czy BRP jest bezpieczny i efektywnie działa u ludzi, mówi Svensson.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na University of Cambridge zidentyfikowano geny powiązane z otyłością u ludzi i labradorów retrieverów.  Badacze znaleźli u tej rasy wiele genów łączących się z otyłością i wykazali, że te same geny łączą się też z otyłością u ludzi. Na szczęście niekorzystny wpływ genów może zostać przezwyciężony za pomocą diety i ćwiczeń.
      U labradorów genem najbardziej powiązanym z otyłością jest DENND1B. Ludzie również go posiadają, a naukowcy wykazali, że i u H. sapiens przyczynia się do otyłości. Okazało się, ze DENND1B bezpośrednio wpływa na szlak sygnałowy w mózgu odpowiedzialny za równowagę energetyczną organizmu, zwany szlakiem leptyna-melanokortyna. Kolejne cztery geny, które powiązano z otyłością u psów, ale wpływają na nią w mniejszym stopniu niż DENN1B, również znaleziono u ludzi. Geny te nie są uważane za oczywiste cele dla leków na otyłość, gdyż kontrolują inne ważne procesy biologiczne, których nie należy zakłócać. Jednak wyniki naszych badań pokazują, jak ważne są szlaki sygnałowe w kontrolowaniu apetytu i masy ciała, wyjaśnia jedna z głównych autorek badań, Alyce McClellan z Wydziału Fizjologii, Rozwoju i Neuronauk University of Cambridge.
      Zauważyliśmy, że psy z większym ryzykiem otyłości są bardziej zainteresowane pożywieniem. Badaliśmy, jak często psy prosiły właścicieli o jedzenie i czy były wybredne. Psy o wyższej skłonności do otyłości miały większy apetyt, dokładnie tak samo jak ludzie o większym genetycznym ryzyku otyłości, dodaje druga z główny autorek, Natalie Wallis.
      Naukowcy stwierdzili też, że właścicielom udawało się zapobiec otyłości u swoich pupili, jeśli kontrolowali ich dietę i zapewniali im odpowiednią ilość ruchu. Podobnie jak u ludzi, tak i u psów, o otyłości nie decydował jeden gen, ale cały ich zestaw.
      Badania psów pokazały nam coś ważnego. Właściciele szczupłych psów nie są lepsi od właścicieli psów otyłych. To samo jest ze szczupłymi ludźmi. Jeśli masz genetyczne predyspozycje do tycia i wokół jest dużo pożywienia, będziesz miał skłonność do przejadania się i przybierania na wadze. Aby temu zapobiec, trzeba włożyć wiele wysiłku, dodaje doktor Eleanor Raffan.
      Badania nad psami pozwoliły nam zmierzyć ich pragnienie jedzenia niezależnie od wysiłków wkładanych przez właścicieli w ich dietę i ruch. W przypadku ludzi takie badania są trudniejsze, gdyż oba elementy przyczyniające się do otyłości – genetyczna skłonność oraz siła woli wkładana w jej zapobieżenie – dotyczą tej samej osoby, wyjaśnia uczona.
      Psy są dobrym modelem do badań nad otyłością u ludzi. Otyłość rozwija się u nich z tych samych przyczyn środowiskowych, a ponieważ w ramach każdej z ras istnieje duże podobieństwo genetyczne, łatwiej jest łączyć geny z chorobą. Wśród ludzi, podobnie jak i wśród psów, ma miejsce epidemia otyłości. Szacuje się, że na nadwagę lub otyłość cierpi 40–60 procent psów.
      Labradory, które miały wariant genu najbardziej powiązany z otyłością – DENND1B – miały średnio o 8% tkanki tłuszczowej więcej, niż psy bez tego wariantu. Te badania pokazują, jak bardzo ludzie i psy są do siebie podobni genetycznie, dodaje Raffan.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Skład mikrobiomu jelit żyraf jest nie tyle determinowany tym, co jedzą, ale do jakiego gatunku należą, informują naukowcy z Uniwersytetu w Uppsali i Brown University. Uczeni badali związki pomiędzy dietą a mikrobiomem jelit trzech gatunków żyraf żyjących w Kenii. Ich badania pomogą w ochronie źródeł pożywienia tych zagrożonych wyginięciem zwierząt.
      Badania polegały na analizie DNA roślin i bakterii obecnych w odchodach żyraf. Dzięki temu można było określić skład flory bakteryjnej oraz dietę zwierząt. Naukowcy zebrali próbki kału trzech różnych gatunków – żyrafy siatkowanej, żyrafy masajskiej i żyrafy sawannowej – które żyją w Kenii w pobliżu równika. Spodziewaliśmy się, że żyrafy o podobnej diecie będą miały podobny mikrobiom, jednak nie znaleźliśmy takiej zależności. Zamiast tego zauważyliśmy, że żyrafy mają mikrobiom specyficzny dla gatunku, nawet jeśli jego przedstawiciele żywią się zupełnie innymi roślinami. To sugeruje, że mikrobiom posiada pewien komponent ewolucyjny, którego nie rozumiemy, mówi główna autorka badań, Elin Videvall.
      Wszystkie wspomniane gatunki są zagrożone. Ich dieta była zależna nie od przynależności gatunkowej, ale od miejsca, w którym mieszkały. Za to mikrobiom zależał od gatunku. Informacja o tym, co zwierzęta jedzą jest niezwykle istotna, szczególnie wówczas, gdy wyznacza się obszary chronione, na których gatunki mają przetrwać. Trzeba się wówczas upewnić, że zwierzęta będą miały tam dostęp do odpowiednich roślin.
      Ze szczegółami badań można zapoznać się w najnowszym numerze pisma Global Ecology and Conservation.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Z pewnością znacie to uczucie, gdy po obfitym posiłku czujecie się najedzeni i nachodzi Was ochota na coś słodkiego. Naukowcy z Instytutu Badań nad Metabolizmem im. Maxa Plancka w Kolonii odkryli, że tajemnica tego zjawiska tkwi w mózgu. Okazało się bowiem, że te same komórki nerwowe, które informują nas, że już jesteśmy najedzeni, są też odpowiedzialne za nasze późniejsze pożądanie słodkości.
      I u myszy, i u ludzi chęć zjedzenia czegoś słodkiego jest aktywowane przez uwolnienie peptydu opioidowego o nazwie beta-endorfina. Zablokowanie jej szlaku sygnałowego może być przydatne w leczeniu otyłości.
      Uczeni z Kolonii, chcąc sprawdzić, dlaczego po obfitym posiłku chcemy zjeść coś słodkiego, badali reakcję myszy na cukier. Odkryli, że najedzone myszy wciąż jadły desery. Badania ich mózgów wykazały, że odpowiedzialne za to są niektóre neurony POMC, które aktywowały się natychmiast, gdy myszy zyskiwały dostęp do cukru. Gdy myszy były najedzone i jadły cukier neurony POMC uwalniały molekuły sygnałowe, które nie tylko informowały o sytości, ale stymulowały też beta-endorfinę. Ta z kolei działała na komórki nerwowe z receptorami opioidowymi, uruchamiając poczucie nagrody, co powodowało, że myszy jadły cukier nawet, gdy były już przejedzone. Szlak opioidowy był aktywowany tylko wówczas, gdy zwierzęta zjadały dodatkowy cukier, ale nie wtedy, gdy zjadały zwykłe pożywienie lub tłuszcz. Gdy naukowcy zablokowali ten szlak, myszy nie chciały jeść dodatkowego cukru. Zjawisko takie miało miejsce tylko  u najedzonych myszy. Gdy zwierzęta były głodne zablokowanie beta-endorfiny nie powodowało, że nie chciały jeść.
      Co ciekawe, mechanizm ten uruchamiał się gdy tylko myszy wyczuły cukier, nawet gdy jeszcze nie zaczynały go jeść. Co więcej, opiat był uwalniany także w mózgu myszy, które nigdy wcześniej nie miały z cukrem do czynienia. A gdy tylko pierwsza porcja cukru trafiła do pyska myszy, beta-endorfina trafiała do neuronów POMC, wzmacniając zapotrzebowanie na cukier.
      Autorzy badań postanowili sprawdzić, czy taki sam mechanizm działa u ludzi. Badanym podawali roztwór cukru przez rurkę, jednocześnie skanując ich mózgi. W ten sposób stwierdzili, że doszło do zwiększonej aktywności w tym samym regionie mózgu, co u myszy. To region, który zawiera wiele receptorów opioidowych położonych blisko neuronów informujących o najedzeniu się. Z ewolucyjnego punktu widzenia, ma to sens. Cukier rzadko występuje w naturze, ale błyskawicznie dostarcza energię. Mózg jest więc zaprogramowany tak, by korzystać z cukru, gdy tylko to możliwe, mówi kierujący badaniami Henning Fenselau.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...