Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Drgające szyby poradzą sobie z hałasem

Recommended Posts

Naukowcy opracowali nowy sposób na wyciszenie pomieszczeń w budynkach, znajdujących się przy hałaśliwych ulicach, lotniskach czy zakładach przemysłowych. Głównym problemem są w nich szyby, które działają jak membrany i drgając przenoszą do środka dźwięki z wewnątrz. Dotychczas próbowano temu problemowi zaradzić zwiększając dwu- lub trzykrotnie grubość szyb. Takie działanie znacznie jednak podnosi koszt budowy.

Thilo Bein i jego zespół z Fraunhofer Institute w Darmastadt wpadli na zupełnie inny pomysł.
Użyli materiału piezoelektrycznego, który pod wpływem prądu działa jednocześnie jak czujnik i generator wibracji. Materiał ten może być przezroczysty, więc można go połączyć ze szkłem. Wbudowany w szybę materiał piezoelektryczny mógłby być połączony następnie z komputerem. Gdy fale dźwiękowe docierają z zewnątrz do szyby, materiał piezoelektryczny przekazuje je do komputera, który dokonuje błyskawicznej analizy i wysyła z powrotem dane, wzbudzające materiał piezoelektryczny do drgań o takiej częstotliwości, która nakłada się na zewnętrzne fale dźwiękowe i je tłumi.

Laboratoryjne eksperymenty wykazały, że w ten sposób można aż o 50% zredukować dźwięk o głośności 90-100 decybeli.

Sami uczeni jednak przestrzegają, że do rynkowego debiutu ich systemu droga jeszcze daleka.

Główną przeszkodą są, oczywiście, wysokie koszty zastosowania ich wynalazku. Poza tym nie uda się wyeliminować niektórych rodzajów hałasu. Trudno będzie również poradzić sobie z hałasem tam, gdzie rodzaj dźwięku ulega bardzo częstym zmianom. Komputer po prostu nie nadąży z analizą docierających sygnałów i przesyłaniem odpowiednich danych do materiału piezoelektrycznego.

Bein i jego zespół rozpoczęli prace nad obniżeniem kosztów i poprawieniem działania systemu.

Share this post


Link to post
Share on other sites
Użyli materiału piezoelektrycznego, który pod wpływem prądu działa jednocześnie jak czujnik i generator wibracji. Materiał ten może być przezroczysty, więc można go połączyć ze szkłem. Wbudowany w szybę materiał piezoelektryczny mógłby być połączony następnie z komputerem. Gdy fale dźwiękowe docierają z zewnątrz do szyby, materiał piezoelektryczny przekazuje je do komputera, który dokonuje błyskawicznej analizy i wysyła z powrotem dane, wzbudzające materiał piezoelektryczny do drgań o takiej częstotliwości, która nakłada się na zewnętrzne fale dźwiękowe i je tłumi.

 

Aktywne tłumienie dzwięku na pojedyńczej szybie nie wyjdzie dobrze (prędkość dzwięku w szkle jest zbyt wysoka) lepiej zastosować dwie szyby jedną jako detektor a drugą jako neutralizator drgań (odległość między szybami to czas na obliczenia i działanie).

 

Tylko po co?? skoro wystarczy wypompować powietrze z pomiędzy szyb i dzwięk przezstanie przenikać, a i własności cieplne się poprawią. 8)

Share this post


Link to post
Share on other sites

Tylko po co?? skoro wystarczy wypompować powietrze z pomiędzy szyb i dzwięk przezstanie przenikać, a i własności cieplne się poprawią. 8)

 

no, nie wiem czy szyby nie będą chciały się "zapaść" pod wpływem ciśnienia powietrza?

ale pomysł z jedną jako detektor, a drugą jako neutralizator to bym opatentował (ostatnio było 500,-PLN).

Share this post


Link to post
Share on other sites

Może by się bardziej skoncentrować nad materiałem ram? Niechybnie osadzenie szyb na elastycznych podkładkach wygaszałoby ich drgania.

Share this post


Link to post
Share on other sites
Niechybnie osadzenie szyb na elastycznych podkładkach wygaszałoby ich drgania

 

W tym przypadku wyboczenie występuje w centralnej części szyby (w zakresie modułu sprężystości) ramy przewodzą dzwięk osobno (raczej użycie sklejanki kilku materiałow byłoby skuteczniejsze - ale nie ma to jak zmiana ciśnienia). 8)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Nowe studium biologów z University of St Andrews pokazuje, że podobnie jak ludzie, ssaki morskie cierpią na chorobę dekompresyjną.
      Dotąd nie było wśród specjalistów zgody w kwestii, czy walenie mogą cierpieć na chorobę dekompresyjną i ewentualnie na ile jest ona dla nich groźna, jednak w swoim najnowszym raporcie Szkoci zademonstrowali dowody na tworzenie się pęcherzyków azotu w tkankach i płynach ustrojowych leżących na plaży waleni oraz fok. Problemem jest nadmierny hałas, np. powodowany przez sonary wojskowe, ponieważ może wywoływać u ssaków morskich dezorientację, zaburzając działanie naturalnych mechanizmów obronnych.
      Niestety, nie istnieje jeszcze technologia, która pozwalałaby zmierzyć, co dzieje się w kategoriach fizjologicznych w organizmie wolno żyjącego walenia, schodzącego na głębokość ponad 1000 metrów. Przegląd ostatnich prac dot. fizjologii nurkowania morskich ssaków sprawił jednak, że doszliśmy do wniosku, że potencjalnie mogą one cierpieć na chorobę dekompresyjną w taki sam sposób jak ludzie - przekonuje dr Sascha Hooker.
      Analizy przeprowadzał zespół złożony z ekspertów w różnych dziedzinach. Znaleźli się w nim lekarze specjalizujący się w ludzkiej medycynie nurkowania, patolog weterynaryjny, a także naukowcy zajmujący się anatomią porównawczą, fizjologią, ekologią i zachowaniem.
      Hooker i współpracownicy z Woods Hole Oceanographic Institution (WHOI) skupili się na ostrych i przewlekłych przypadkach, śledząc tworzenie się pęcherzyków gazu w narządach wali dziobogłowych, które wypłynęły na plażę zmylone sonarami, w nerkach i okolicach wątroby delfinów masowo zbaczających na plaże oraz w tkankach delfinów i fok złapanych przez przypadek w sieci rybackie.
      Badając mechanizmy zapobiegające urazom związanym z nurkowaniem u ssaków morskich, Hooker i inni stwierdzili, że są one bardziej zmienne, niż się nam dotąd wydawało. Nasze odkrycia zmieniają sposób myślenia o sposobie radzenia sobie przez ssaki ze zmianami ciśnienia podczas nurkowania. Podręczniki mówią nam, że foki i walenie mogą tolerować duże zanurzenia i szybkie wynurzenia bez obciążenia azotem, które prowadzi do choroby dekompresyjnej. My sugerujemy, że nie jest tak w odniesieniu do wszystkich gatunków i że [niektóre] mogą uzależniać zarządzanie azotem od innych wymogów fizjologicznych, takich jak zapotrzebowanie na tlen lub potrzeba podtrzymania krążenia, by się rozgrzać. Martwimy się, że te naturalnie wyewoluowane mechanizmy mogą nie wytrzymać presji ze strony ludzi. Oczywiste zagrożenia, takie jak nagły hałas, wymuszają bowiem [natychmiastową] reakcję, zmieniając trajektorię nurkowania albo uruchamiając odpowiedź walcz lub uciekaj. Dochodzi wtedy do przeciążenia mechanizmów obronnych i rzadka w zwykłych warunkach choroba dekompresyjna staje się czymś realnym.
    • By KopalniaWiedzy.pl
      W głośnym otoczeniu alkohol wydaje się słodszy, co może upośledzać zdolność oceny ilości wypitego piwa, wina czy drinków - przekonują brytyjscy psycholodzy.
      Dr Lorenzo Stafford z Uniwersytetu w Portsmouth jako pierwszy zajął się wpływem muzyki na zmianę postrzeganego smaku alkoholu. Ponieważ ssaki mają wrodzone upodobanie do słodyczy, zyskaliśmy przekonujące wyjaśnienie, czemu spożywamy więcej alkoholu w hałaśliwym środowisku. Choć przeprowadzone badania nie były zakrojone na szerszą skalę, mogą mieć duże znaczenie [nie tylko dla ludzi], ale i dla barów, przemysłu alkoholowego oraz lokalnych władz.
      W eksperymencie Stafforda badani mieli ocenić zestaw drinków o różnej zawartości alkoholu pod kątem mocy, słodyczy i goryczki. Zastosowano wobec nich zakłócenia o 4 poziomach natężenia: od braku rozpraszaczy po głośną muzykę typu klubowego, której towarzyszyło odczytywanie wiadomości. Okazało się, że drinki uznawano za znacznie słodsze, kiedy ochotnicy słuchali wyłącznie muzyki.
      To interesujące spostrzeżenie, bo wydawałoby się, że muzyka w połączeniu z powtarzaniem raz po raz newsa zadziała bardziej rozpraszająco na ocenę smaku. Wydaje się jednak, że nasz podstawowy zmysł smaku jest w jakiś sposób odporny na bardzo zakłócające warunki, ale wpływa na niego sama muzyka.
      Warto przypomnieć, że wcześniejsze badania wykazały, że gdy gra głośna muzyka, ludzie piją więcej i szybciej.
    • By KopalniaWiedzy.pl
      Ze względu na silne właściwości toksyczne bezwonny, bezbarwny tlenek węgla kojarzy nam się, zwłaszcza w sezonie zimowym, z hasłem "cichy zabójca". Tymczasem okazuje się, że w niewielkich dawkach działa on jak narkotyk, pozwalając mieszkańcom miast radzić sobie ze stresem środowiskowym, np. wszechobecnym hałasem. Wygląda więc na to, że metropolie podtruwają nas CO ze spalin, sprawiając, że na lekkim haju czujemy się w nich szczęśliwsi (Environmental Monitoring and Assessment).
      Prof. Itzhak Schnell z Uniwersytetu w Tel Awiwie doszedł do tego zaskakującego wniosku, prowadząc badania w ramach projektu dotyczącego wpływu stresorów środowiskowych na ludzkie ciało. Naukowiec zaznacza, że większość ekologicznych stacji obserwacyjnych znajduje się poza centrami miast, co znacznie zaburza dane. By stwierdzić, jak żyje się w samym środku metropolii, zespół poprosił 36 zdrowych osób w wieku 20-40 lat o spędzenie 2 dni w Tel Awiwie. Ochotnicy udawali się do restauracji, hipermarketów czy na ruchliwe ulice. Chodzili na piechotę, korzystali z komunikacji miejskiej i własnych samochodów. W tym czasie monitorowano wpływ 4 stresorów środowiskowych: obciążenia termicznego (chłodu i gorąca), hałasu, stężenia tlenku węgla oraz zatłoczenia.
      Subiektywną ocenę stopnia stresogenności doświadczenia porównywano z odczytami czujników oraz tętnem. Okazało się, że hałas był dla ludzi najbardziej stresujący. Schnell zaznacza, że stężenie wdychanego CO okazało się dużo niższe niż przypuszczano (ok. 1-15 części na milion na każde pół godziny). Poza tym gaz wydawał się wpływać na uczestników studium jak narkotyk. Dzięki niemu hałas i tłok nie wydawały się już takie straszne.
      Choć poziom stresu narastał w ciągu dnia, CO działał uspokajająco. Co więcej, przedłużony kontakt z gazem nie powodował utrzymujących się efektów ubocznych.
    • By KopalniaWiedzy.pl
      Jeśli podczas operacji jest głośno, u operowanych pacjentów częściej występują zakażenia powierzchowne miejsca operowanego (ang. surgical site infections, SSIs).
      Naukowcy ze Szpitala Uniwersyteckiego w Bernie badali przypadki 35 osób, które poddano dużym zabiegom w obrębie jamy brzusznej. Szwajcarzy analizowali dane demograficzne pacjentów, czas trwania operacji oraz dźwięki z sali zabiegowej. U 6 chorych wystąpiły SSIs i jedyną zmienną odróżniającą ich od reszty próby był poziom hałasu na sali operacyjnej.
      Zakażenia powierzchowne miejsca operowanego sprawiają, że pobyt chorych w szpitalu przedłuża się o 13 dni, co 3-krotnie zwiększa koszt leczenia - podkreśla dr Guido Beldi, który uważa, że hałas na sali operacyjnej stwarza stresujące środowisko i/lub prowadzi do spadku koncentracji uwagi.
      Mediana głośności dźwięków na sali w przypadku pacjentów z SSIs wynosiła 43,5 dB, a w przypadku reszty 25 dB. Wartość szczytową sygnału, która o co najmniej 4 dB przewyższała medianę, odnotowano u 23% pacjentów z zakażeniami i tylko 11% pozostałych osób. Natężenie dźwięku rosło w ciągu godziny po pierwszym nacięciu. Wg Szwajcarów, da się to powiązać ze wzrastającą trudnością zabiegu, ale także z rozmowami niezwiązanymi z pacjentem. Drugie ze spostrzeżeń może sugerować, że u wszystkich (chirurgów, anestezjologów i pielęgniarek) doszło do pewnego spadku koncentracji.
      Wyniki naszego studium sugerują, że zwiększone natężenie dźwięków na sali operacyjnej może wskazywać na trudność zabiegu, stresujące środowisko, spadek dyscypliny lub koncentracji. Każdy z tych czynników może zwiększyć ryzyko SSIs oraz innych komplikacji, dlatego konieczne są dalsze badania dot. źródła hałasu na sali operacyjnej i jego wpływu na zachowanie oraz wyniki chirurgów.
    • By KopalniaWiedzy.pl
      Jeśli naukowcy z MIT-u osiągną to, co zamierzają, w przyszłości szyby w budynkach będą działały jak ogniwa słoneczne, a jednocześnie nie stracą nic ze swojej przejrzystości. Stanie się to możliwe dzięki stworzeniu ogniw fotowoltaicznych z molekuł organicznych. Zostaną one nałożone na zwykłe szyby i umożliwią tworzenie energii zasilającej budynek.
      Profesor Vladimir Bulović mówi, że od 50 do 75 procent kosztów ogniw cienkowarstwowych stanowią ceny instalacji, a z kolei połowa kosztów samych paneli to koszty szklanego podłoża i innych części struktury. Uczony twierdzi, że dzięki opracowanej przez niego oraz Richarda Lunta uda się znacznie obniżyć koszt paneli.
      Już wcześniej próbowano tworzyć przezroczyste ogniwa słoneczne, jednak albo charakteryzowała je niezwykle niska wydajność (poniżej 1%), albo też blokowały tak dużo światła, że nie mogły być używane na szybach. Uczeni z MIT-u znaleźli nową chemiczną formułę, która po połączeniu z pokryciem częściowo odbijającym podczerwień, zapewnią w przyszłości przezroczystym ogniwom paliwowym wydajność porównywalną z tradycyjnymi ogniwami.
      W nowych budynkach czy też tam, gdzie szyby są wymieniane, zastosowanie szyb z ogniwami słonecznymi będzie oznaczało jedynie niewielki wzrost kosztów, gdyż będzie to takie samo szkło, ramy oraz procedury montażowe, jak w przypadku zwykłych okien, na które trzeba by przeznaczyć pieniądze. Jedynymi dodatkowymi elementami będzie okablowanie i kontroler napięcia. W stosowanych obecnie oknach z podwójnymi szybami ogniwa można nakładać na wewnętrzne strony szyb, gdzie będą chronione przed wpływem czynników atmosferycznych.
      Obecnie ogniwa z MIT-u znajdują się na wczesnej fazie rozwoju i obecnie ich wydajność wynosi 1,7%. Bulović i Lunta zapewniają, że w przyszłości będą zamieniały w elektryczność aż 12% energii słonecznej, jaka do nich dociera. Uczeni mówią, że ich produkt powinien trafić na rynek w ciągu najbliższych 10 lat.
      Profesor Max Shetin z University of Michigan stwierdza, że pomysł uczonych z MIT-u jest bardzo ciekawy, jednak to jedna z wielu podobnych idei, a zagrożeniem dla nich wszystkich może okazać się żywotność materiału, z którego będą wykonane ogniwa. Obecnie nie wiadomo, jak długo jest on w stanie spełniać postawione przed nim zadanie. Shetin zauważa też, że nowa technologia spełni pokładane w niej nadzieje tylko wówczas, gdy rzeczywiście zostanie osiągnięta zakładana wydajność.
×
×
  • Create New...