Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Chipy jak płatki śniegu

Recommended Posts

Naukowcy IBM-a wykorzystali naturalne procesy formowania się płatków śniegu, muszli i zębów do stworzenia układów scalonych przyszłej generacji. To, co podpatrzyli w naturze, pozwoliło im zbudować układ scalony, w którym poszczególne połączenia są odizolowane od siebie za pomocą próżni.

Obecnie ścieżki w układach scalonych tworzy się z miedzi, która otoczona jest izolatorem. Cały proces jest dość skomplikowany i wymaga stworzenia odpowiedniej przesłony (tzw. maski), w której wycięty jest wzór rozmieszczenia ścieżek i otworów. Promień lasera, przechodząc przez maskę, rysuje ten wzór na krzemie. Następnie krzem poddaje się jeszcze odpowiedniej obróbce chemicznej.

Wynalazek IBM-a pozwala zrezygnować z maski i wytrawiania krzemu światłem. Naukowcy Błękitnego Giganta opracowali odpowiednią mieszaninę składników, którą pokrywa się odpowiednio przygotowany krzem, a następnie całość poddaje wypiekaniu. Podczas tego procesu powstaje wzór, który tym różni się od naturalnego (np. z płatków śniegu), że jest powtarzalny. Technika IBM-a pozwala na stworzenie miliardów identycznych otworów o średnicy 20 nanometrów.

Gdy otwory już powstały usunięto z nich szkło węglowo-krzemianowe, tworząc w ten sposób próżnię pomiędzy ścieżkami miedzi. Działa ona jak izolator, a dzięki niej sygnały elektryczne biegną o 35% szybciej niż w analogicznych układach stworzonych za pomocą tradycyjnych metod. Przy tej samej prędkości przepływu sygnałów układ wymaga natomiast o 15% mniej energii.

Cały proces można zastosować na standardowych liniach produkcyjnych CMOS i nie wymaga on ani ich przebudowy, ani inwestowania w nowe urządzenia.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      IBM uruchomił w Nowym Jorku Quantum Computation Center, w którym znalazł się największy na świecie zbiór komputerów kwantowych. Wkrótce dołączy do nich nich 53-kubitowy system, a wszystkie maszyny są dostępne dla osób i instytucji z zewnątrz w celach komercyjnych i naukowych.
      Quantum Computation Center ma w tej chwili ponad 150 000 zarejestrowanych użytkowników oraz niemal 80 klientów komercyjnych, akademickich i badawczych. Od czasu, gdy w 2016 roku IBM udostępnił w chmurze pierwszy komputer kwantowy, wykonano na nim 14 milionów eksperymentów, których skutkiem było powstanie ponad 200 publikacji naukowych. W związku z rosnącym zainteresowaniem obliczeniami kwantowymi, Błękity Gigant udostępnił teraz 10 systemów kwantowych, w tym pięć 20-kubitowych, jeden 14-kubitowy i cztery 5-kubitowe. IBM zapowiada, że w ciągu miesiąca liczba dostępnych systemów kwantowych wzrośnie do 14. Znajdzie się wśród nich komputer 53-kubitowy, największy uniwersalny system kwantowy udostępniony osobom trzecim.
      Nasza strategia, od czasu gdy w 2016 roku udostępniliśmy pierwszy komputer kwantowy, polega na wyprowadzeniu obliczeń kwantowych z laboratoriów, gdzie mogły z nich skorzystać nieliczne organizacje, do chmur i oddanie ich w ręce dziesiątków tysięcy użytkowników, mówi Dario Gil, dyrektor IBM Research. Chcemy wspomóc rodzącą się społeczność badaczy, edukatorów i deweloperów oprogramowania komputerów kwantowych, którzy dzielą z nami chęć zrewolucjonizowania informatyki, stworzyliśmy różne generacje procesorów kwantowych, które zintegrowaliśmy w udostępnione przez nas systemy kwantowe.
      Dotychczas komputery kwantowe IBM-a zostały wykorzystane m.in. podczas współpracy z bankiem J.P. Morgan Chase, kiedy to na potrzeby operacji finansowych opracowano nowe algorytmy przyspieszające pracę o całe rzędy wielkości. Pozwoliły one na przykład na osiągnięcie tych samych wyników dzięki dostępowi do kilku tysięcy przykładów, podczas gdy komputery klasyczne wykorzystujące metody Monte Carlo potrzebują milionów próbek. Dzięki temu analizy finansowe mogą być wykonywane niemal w czasie rzeczywistym. Z kolei we współpracy z Mitsubishi Chemical i Keio University symulowano początkowe etapy reakcji pomiędzy litem a tlenem w akumulatorach litowo-powietrznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze IBM-a postawili sobie ambitny cel. Chcą co roku dwukrotnie zwiększać wydajność komputerów kwantowych tak, by w końcu były one szybsze lub bardziej wydajne niż komputery klasyczne. Podczas tegorocznych targów CES IBM pokazał przełomowe urządzenie: IBM Q System One, pierwszy komputer kwantowy, który ma być gotowy do komercyjnego użytku.
      Celem IBM-a jest coś, co nazywają „Quantum Advantage” (Kwantowa przewaga). Zgodnie z tym założeniem komputery kwantowe mają zyskać „znaczną” przewagę nad komputerami klasycznymi. Przez „znaczną” rozumie się tutaj system, który albo będzie setki lub tysiące razy szybszy od komputerów kwantowych, albo będzie wykorzystywał niewielki ułamek pamięci potrzebny maszynom kwantowym lub też będzie w stanie wykonać zadania, jakich klasyczne komputery wykonać nie są.
      Wydajność komputera kwantowego można opisać albo za pomocą tego, jak sprawują się poszczególne kubity (kwantowe bity), albo też jako ogólną wydajność całego systemu.
      IBM poinformował, że Q System One może pochwalić się jednym z najniższych odsetków błędów, jakie kiedykolwiek zmierzono. Średni odsetek błędów na dwukubitowej bramce logicznej wynosi mniej niż 2%, a najlepszy zmierzony wynik to mniej niż 1%. Ponadto system ten jest bliski fizycznemu limitowi czasów koherencji, który w w przypadku Q System One wyniósł średnio 73 ms.To oznacza, że błędy wprowadzane przez działanie urządzenia są dość małe i zbliżamy się do osiągnięcia minimalnego możliwego odsetka błędów, oświadczyli badacze IBM-a.
      Błękitny Gigant stworzył też Quantum Volume, system pomiaru wydajności komputera kwantowego jako całości. Bierze on pod uwagę zarówno błędy na bramkach, błędyh pomiarów czy wydajność kompilatora. Jeśli chcemy osiągnąć Quantum Advantage w latach 20. XXI wieku, to każdego roku wartość Quantum Volume musi się co najmniej podwajać, stwierdzili badacze. Na razie udaje im się osiągnąć cel. Wydajność pięciokubitowego systemu Tenerife z 2017 roku wynosiła 4. W 2018 roku 20-kubitowy system IBM Q osiągnął w teście Quantum Volume wynik 8. Najnowszy zaś Q System One nieco przekroczył 16.
      Sądzimy, że obecnie przyszłość komputerów to przyszłość komputerów kwantowych, mówią specjaliści z IBM-a.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      IBM poinformował o podpisaniu porozumienia, w ramach którego Błękitny Gigant przejmie znanego producenta jednej z dystrybucji Linuksa, firmę Red Hat. Transakcja będzie warta 34 miliardy dolarów. Jeśli do niej dojdzie będzie to trzecia największa w historii akwizycja na rynku IT.
      Umowa przewiduje, że IBM wykupi akcje Red Hata, płacąc za każdą z nich 190 dolarów. Na zamknięciu ostatniej sesji giełdowej przed ogłoszeniem transakcji akcje Red Hata kosztowały 116,68 USD.
      Przejęcie Red Hata zmieni zasady gry. Całkowicie zmieni rynek chmur obliczeniowych, mówi szef IBM-a Ginni Rometty. "IBM stanie się największym na świecie dostawcą dla hybrydowych chmur i zaoferuje przedsiębiorcom jedyną otwartą architekturę chmur, dzięki której klient będzie mógł uzyskać z niej maksimum korzyści", dodał. Zdaniem menedżera obenie większość firm wstrzymuje się z rozwojem własnych chmur ze względu na zamknięte architektury takich rozwiązań.
      Jeszcze przed kilku laty IBM zajmował się głównie produkcją sprzętu komputerowego. W ostatnim czasie firma zdecydowanie weszła na takie rynki jak analityczny czy bezpieczeństwa. Teraz ma zamiar konkurować z Microsoftem, Amazonem czy Google'em na rynku chmur obliczeniowych.
      Po przejęciu Red Hat będzie niezależną jednostką zarządzaną przez obecnego szefa Jima Whitehursta i obecny zespół menedżerów. To ważny dzień dla świata open source. Doszło do największej transakcji w historii rynku oprogramowania i bierze w tym udział firma zajmująca się otwartym oprogramowaniem. Tworzymy historię, dodał Paul Cormier, wiceprezes Red Hata.
      Obecnie Red Hat ma siedziby w 35 krajach, zatrudnia około 12 000 osób je jest jednym z największych oraz najbardziej znanych graczy na rynku open source. W roku 2018 zysk firmy wyniósł 259 milionów dolarów czy przychodach rzędu 2,9 miliarda USD. Dla porównania, w 2017 roku przychody IBM-a zamknęły się kwotą 79 miliardów dolarów, a zysk to 5,8 miliarda USD.
      Na przejęcie muszą się jeszcze zgodzić akcjonariusze Red Hata oraz odpowiednie urzędy antymonopolowe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kleszcze z gatunku Haemaphysalis flava zostały jako pierwsze sfilmowane żywe pod skaningowym mikroskopem elektronowym (SEM). To nie lada osiągnięcie, zważywszy, że próbki umieszcza się w próżni i bombarduje wiązką elektronów.
      By próżnia nie doprowadziła przypadkiem do wybuchu, przed umieszczeniem w mikroskopie próbki pochodzenia biologicznego poddaje się liofilizacji niskotemperaturowej. W takiej właśnie komorze liofilizacyjnej podłączonej do pompy próżniowej Yasuhito Ishigaki z Kanazawa Medical University natrafił na żywe kleszcze. Nawet po półgodzinie, gdy większość powietrza już odessano, pajęczaki czuły się całkiem dobrze.
      Zadziwiony wytrzymałością pasażerów na gapę, Japończyk umieścił 20 osobników (8 dorosłych samic i 12 nimf) w SEM. Nie przygotowywał ich w jakiś specjalny sposób, tylko przykleił do taśmy przewodzącej (normalnie, ponieważ pozostała po liofilizacji substancja organiczna raczej nie odbija szybkich elektronów, ale je hamuje, trzeba zastosować powlekanie cienką warstwą metalu, np. złota).
      Akademik zrezygnował z metalowej powłoki (tzw. repliki), gdyż wiedział, że w przeszłości naukowcom i bez niej udawało się obserwować martwe kleszcze. We wnętrzu mikroskopu elektronowego musi panować wysoka próżnia, by elektrony nie rozpraszały się na cząsteczkach powietrza. Podczas eksperymentu zespołu Ishigakiego ciśnienie wysokiej próżni wynosiło 1.5×10−3 Pa. Pajęczaki poruszały odnóżami, a po wyjęciu z mikroskopu rozchodziły się na wszystkie strony. Wydaje się jednak, że "deszcz elektronów" zebrał swoje żniwo. Choć wszystkie osobniki przeżyły co najmniej 2 dni, bez kąpieli w ujemnie naładowanych cząstkach mogłyby żyć kilka tygodni. W niektórych przypadkach H. flava wydawały się podejmować próby ucieczki przed wiązką elektronów. Z dwojga złego lepsza jest próżnia, bo wszystko wskazuje na to, że kleszcze potrafią na długo wstrzymać oddech.
      Badanie Japończyka nie uzupełnia w jakiś znaczący sposób naszej wiedzy o kleszczach. W dotyczących ich studiach SEM wykorzystuje się już od lat 70. Teraz zdobyliśmy jedynie garść szczegółów związanych lokomocją tych pajęczaków.
      W 2008 r. ogłoszono, że niesporczaki potrafią przetrwać w kosmicznej próżni (tym samym stały się one pierwszymi zwierzętami, u których zidentyfikowano tę umiejętność). W ich przypadku "kontakt" miał jednak miejsce w stanie anhydrobiozy, a kleszcze w ogóle nie przygotowywały się do wyzwania.
       
       
    • By KopalniaWiedzy.pl
      IBM pokaże dzisiaj prototypowy optyczny układ scalony „Holey Optochip“. To pierwszy równoległy optyczny nadajnik-odbiornik pracujący z prędkością terabita na sekundę. Urządzenie działa zatem ośmiokrotnie szybciej niż inne tego typu kości. Układ pozwala na tak szybki transfer danych, że mógłby obsłużyć jednocześnie 100 000 typowych użytkowników internetu. Za jego pomocą można by w ciągu około godziny przesłać zawartość Biblioteki Kongresu USA, największej biblioteki świata.
      Holey Optochip powstał dzięki wywierceniu 48 otworów w standardowym układzie CMOS. Dało to dostęp do 24 optycznych nadajników i 24 optycznych odbiorników. Przy tworzeniu kości zwrócono też uwagę na pobór mocy. Jest on jednym z najbardziej energooszczędnych układów pod względem ilości energii potrzebnej do przesłania jednego bita informacji. Holey Optochip potrzebuje do pracy zaledwie 5 watów.
      Cały układ mierzy zaledwie 5,2x5,8 mm. Odbiornikami sygnału są fotodiody, a nadajnikami standardowe lasery półprzewodnikowe VCSEL pracujące emitujące światło o długości fali 850 nm.
×
×
  • Create New...