Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

IBM uruchamia Centrum Obliczeń Kwantowych i udostępnia 10 komputerów

Recommended Posts

IBM uruchomił w Nowym Jorku Quantum Computation Center, w którym znalazł się największy na świecie zbiór komputerów kwantowych. Wkrótce dołączy do nich nich 53-kubitowy system, a wszystkie maszyny są dostępne dla osób i instytucji z zewnątrz w celach komercyjnych i naukowych.

Quantum Computation Center ma w tej chwili ponad 150 000 zarejestrowanych użytkowników oraz niemal 80 klientów komercyjnych, akademickich i badawczych. Od czasu, gdy w 2016 roku IBM udostępnił w chmurze pierwszy komputer kwantowy, wykonano na nim 14 milionów eksperymentów, których skutkiem było powstanie ponad 200 publikacji naukowych. W związku z rosnącym zainteresowaniem obliczeniami kwantowymi, Błękity Gigant udostępnił teraz 10 systemów kwantowych, w tym pięć 20-kubitowych, jeden 14-kubitowy i cztery 5-kubitowe. IBM zapowiada, że w ciągu miesiąca liczba dostępnych systemów kwantowych wzrośnie do 14. Znajdzie się wśród nich komputer 53-kubitowy, największy uniwersalny system kwantowy udostępniony osobom trzecim.

Nasza strategia, od czasu gdy w 2016 roku udostępniliśmy pierwszy komputer kwantowy, polega na wyprowadzeniu obliczeń kwantowych z laboratoriów, gdzie mogły z nich skorzystać nieliczne organizacje, do chmur i oddanie ich w ręce dziesiątków tysięcy użytkowników, mówi Dario Gil, dyrektor IBM Research. Chcemy wspomóc rodzącą się społeczność badaczy, edukatorów i deweloperów oprogramowania komputerów kwantowych, którzy dzielą z nami chęć zrewolucjonizowania informatyki, stworzyliśmy różne generacje procesorów kwantowych, które zintegrowaliśmy w udostępnione przez nas systemy kwantowe.

Dotychczas komputery kwantowe IBM-a zostały wykorzystane m.in. podczas współpracy z bankiem J.P. Morgan Chase, kiedy to na potrzeby operacji finansowych opracowano nowe algorytmy przyspieszające pracę o całe rzędy wielkości. Pozwoliły one na przykład na osiągnięcie tych samych wyników dzięki dostępowi do kilku tysięcy przykładów, podczas gdy komputery klasyczne wykorzystujące metody Monte Carlo potrzebują milionów próbek. Dzięki temu analizy finansowe mogą być wykonywane niemal w czasie rzeczywistym. Z kolei we współpracy z Mitsubishi Chemical i Keio University symulowano początkowe etapy reakcji pomiędzy litem a tlenem w akumulatorach litowo-powietrznych.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Fizycy donoszą o zdobyciu pierwszego bezsprzecznego dowodu na istnienie anyonów, cząstek, których istnienie zostało zaproponowane przed ponad 40 laty. Anyony to kwazicząstki, które nie są ani fermionami, ani bozonami zatem podlegają statystyce innej niż statystyka Fermiego-Diraca i Bosego-Einsteina. Anyony mogą istnieć w przestrzeni dwuwymiarowej.
      Odkrycie, którego dokonano za pomocą elektronicznego urządzenia 2D, może być pierwszym krokiem na drodze wykorzystania anyonów w przyszłych komputerach kwantowych.
      Wszystkie cząstki elementarne są albo fermionami albo bozonami. Anyony nie należą do żadnej z tych kategorii. Fermiony są definiowane przez statystykę Fermiego-Diraca. Gdy dwa identyczne fermiony zamieniają się miejscem w przestrzeni ich funkcja falowa zmienia pozycję o 180 stopni. W przypadku zaś bozonów, definiowanych przez statystykę Bosego-Einsteina, nie dochodzi w takim przypadku do zmiany funkcji falowej. Innymi słowy, cząstki o spinach połówkowych (fermiony) dążą do pozostawania osobno od siebie, natomiast cząstki o spinach całkowitych (bozony) dążą do gromadzenia się. Anyony znajdują się gdzieś po środku. Zmiana pozycji anyonów powinna doprowadzić do zmiany funkcji falowej o kąt pośredni. Podlegają one statystyce cząstkowej.
      Jeśli jedna kwazicząstka wykona pełen obrót wokół drugiej, co jest odpowiednikiem dwukrotnej zamiany pozycji pomiędzy nimi, informacja o tym ruchu zostanie zachowana w stanie kwantowym cząstki. I to właśnie ten zapamiętany stan jest jedną z cech charakterystycznych statystyki cząstkowej, której poszukiwali obecnie naukowcy, by potwierdzić istnienie anyonów.
      Fizyk eksperymentalny Michael Manfra i jego zespół z Purdue University, stworzyli strukturę złożoną z cienkich warstw arsenku galu i arsenku aluminiowo-galowego. Struktura taka wymusza ruch elektronów w dwóch wymiarach. Urządzenie zostało schłodzone do 1/10 000 stopnia powyżej zera absolutnego i poddano je działaniu silnego pola magnetycznego. W ten sposób pojawił się tzw. izolator cząstkowego kwantowego efektu Halla. W izolatorze takim prąd elektryczny nie może przemieszczać się w wewnątrz urządzenia, a wyłącznie po jego krawędziach. Urządzenie może przechowywać kwazicząstki, których ładunek elektryczny nie jest wielokrotnością ładunku elektronów. Naukowcy podejrzewali, że kwazicząstki te to właśnie anyony.
      By udowodnić, że istotnie mają do czynienia z anyonami, uczeni połączyli swoje urządzenie do elektrod w ten sposób, że ładunki mogły przepływać tylko po krawędziach. Właściwości urządzenia były dobierane za pomocą pola magnetycznego i elektrycznego. Spodziewano się, że manipulacja tymi polami albo zniszczy ani utworzy anyony wewnątrz urządzenia i spowoduje, że anyony będą przemieszczały się pomiędzy elektrodami. Jako, że poruszające się anyony mogą poruszać się dwiema możliwymi ścieżkami, a każda z nich powoduje pojawienie się innego skrętu ich fal, gdy anyony docierają do celu dochodzi do interferencji i pojawienia się wzorca określanego jako paski na piżamie.
      Wzorzec ten pokazywał relatywną wartość skrętu fal anyonów pomiędzy obiema ścieżkami i był zależny od zmian napięcia i siły pola magnetycznego. Ostatecznym dowodem zaś były wyraźnie widoczne przeskoki, świadczące o znikaniu i pojawianiu się anyonów w urządzeniu.
      Zespół Manfry nie jest jedynym, który przedstawił dowody na istnienie statystyki cząstkowej, zatem na istnienie anyonów. Jednak w wielu poprzednich przypadkach uzyskane wyniki dawało się wytłumaczyć również w inny sposób, mówi Bernard Rosenow, fizyk-teoretyk z Uniwersytetu w Lipsku specjalizujący się w badaniu materii skontensowanej. Tymczasem, jak sam przyznaje, nie znam innego wyjaśnienia dla wyników uzyskanych przez Manfrę, jak interpretacji mówiącej o statystyce cząstkowej. Jeśli więc inny zespół potwierdzi obserwacje Manfry i jego kolegów, będziemy mogli mówić o odkryciu anyonów.
      Anyony zaś mogą posłużyć do budowy komputerów kwantowych. Już zresztą istnieją teorie opisujące takie maszyny. W parach kwazicząstek można zapisać informacje o tym, jak krążyły one wokół siebie. Jako, że statystyka cząstkowa jest topologiczna, zależy od liczby okrążeń, jakie jeden anyon wykonał wokół drugiego, a nie od niewielkich zmian trajektorii, jest odporna na niewielkie zakłócenia.
      Ta odporność zaś może spowodować, że topologiczne komputery kwantowe będą łatwiejsze do skalowania niż obecnie wykorzystywane technologie komputerów kwantowych, które są bardzo podatne na błędy. Microsoft, dla którego zresztą Manfra pracuje jako zewnętrzny konsultant, jest jedyną firmą pracującą obecnie nad topologicznymi komputerami kwantowymi. Inni giganci, jak IBM, Intel Google i Honeywell, udoskonalają inne technologie.
      Jednak do wykorzystania anyonów w komputerach kwantowych jest jeszcze daleka droga. Obecne odkrycie jest ważniejsze z punktu widzenia fizyki niż informatyki kwantowej. Dla mnie, jako teoretyka zajmującego się materią skondensowaną, kwazicząstki są równie fascynujące i egzotyczne jak bozon Higgsa, mówi Rosenow.
      Ze szczegółami pracy Manfry i jego zespołu można zapoznać się na łamach arXiv.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Inżynierowe z Uniwersytetu Nowej Południowej Walii (UNSW) w Sydney uzyskali sztuczne atomy w krzemowych kropkach kwantowych. Były one bardziej stabilne niż atomy naturalne, zatem poprawiały stabilność całego układ kwantowego.
      Profesor Andew Dzurak wyjaśnia, że sztuczne atomy nie posiadał y jądra, ale miały elektrony krążące wokół centrum urządzenia. Pomysł na stworzenie sztucznych atomów z elektronów nie jest niczym nowym. Teoretycznie zaproponowano je już w latach 30. ubiegłego wieku, a w latach 90. udało się je uzyskać, chociaż nie na krzemie. My po raz pierwszy wytworzyliśmy proste atomy na krzemie w roku 2013.
      Jednak naszym najważniejszym osiągnięciem jest uzyskanie sztucznych atomów z większą liczbą elektronów niż wcześniej było możliwe, co oznacza, że będzie można takie atomy wykorzystać do wiarygodnych obliczeń w komputerach kwantowych. To bardzo ważne, gdyż kubity bazujące na jednym elektronie są bardzo zawodne.
      Jak wyjaśnia profesor Dzurak okazało się, że gdy stworzymy sztuczne atomy w naszych kwantowych obwodach, one również mają dobrze zorganizowane w sposób przewidywalny powłoki elektronowe, podobnie jak naturalne atomy.
      Profesor Dzurak wraz z zespołem skonfigurowali kwantowe urządzenia tak, by przetestować stabilność elektronów w sztucznym atomie. Wykorzystali napięcie elektryczne, by przyciągnąć elektrony i stworzyć z nich kwantową kropkę o średnicy około 10 nanometrów. W miarę jak powoli zwiększaliśmy napięcie, przyciągaliśmy kolejne elektrony i tak, jeden po drugim, tworzyliśmy z nich sztuczny atom w kwantowej kropce, wyjaśnia doktor Andre Saraiva, który odpowiadał za teoretyczną stronę badań.
      W prawdziwym atomie w środku mamy ładunek dodatni, czyli jądro, wokół którego na trójwymiarowych orbitach krążą elektrony o ładunku ujemnym. W naszym przypadku nie mieliśmy dodatnio naładowanego jądra, a ładunek dodatni pochodził z elektrody oddzielonej od krzemu warstwą tlenku krzemu oraz elektrony zawieszone pod nią. Każdy z nich krąży wokół centrum kwantowej kropki. Nie tworzą tam sfery, ale raczej płaski dysk.
      Naukowców interesowało szczególnie, co się stanie, gdy do istniejących elektronów doda się kolejny, który zajmie najbardziej zewnętrzną powłokę. Okazało się, że taki elektron może zostać użyty w roli kubitu. Dotychczas niedoskonałości krzemu na poziomie atomowym zaburzały zachowania kubitów, prowadząc do niestabilności i błędów. Wydaje się jednak, że elektrony znajdujące się na wewnętrznych powłokach działają jak „podkład” na niedoskonałym podłożu, zapewniając stabilność elektronu na zewnętrznej powłoce, wyjaśniają.
      Profesor Dzurak dodaje, że wartość kubitu została zakodowana w spinie elektronu. Gdy elektrony, czy to w sztucznym czy w naturalnym atomie, utworzą powłokę, ustawiają swoje spiny w przeciwnych kierunkach, więc spin całości wynosi 0 i jest ona la nas nieprzydatna. gdy jednak dodamy nowy elektron na nowej powłoce, zyskujemy nową spin, który możemy wykorzystać jako kubit. Wykazaliśmy, ze jesteśmy w stanie kontrolować spin elektronów na zewnętrznych powłokach, zyskując w ten sposób stabilne wiarygodne kubity. To bardzo ważne, gdyż to oznacza, że możemy teraz pracować z mniej delikatnymi kubitami. Pojedynczy elektron jest niezwykle delikatny. Ale sztuczny atom z 5 czy 13 elektronami jest znacznie bardziej odporny.
      Zespół profesora Dzuraka był pierwszym, który już w 2015 roku zaprezentował kwantową bramkę logiczną na krzemie. Wcześniej, również jako pierwsi, uzyskali kubit na krzemie. W ubiegłym zaś roku jako pierwsi zmierzyli dokładność dwukubitowych operacji logicznych na krzemie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Björk i Microsoft stworzyli interesujący projekt muzyczny. Wykorzystali sztuczną inteligencję do stworzenia muzyki bazującej na zmieniającej się pogodzie. Projekt o nazwie „Kórsafn", co po islandzku znaczy „archiwum chórów”, wykorzystuje archiwum chórów, które Björk tworzyła przez 17 lat. Sztuczna inteligencja miesza te fragmenty muzyki, tworzy nowe połączenia i odtwarza je w nowojorskim hotelu Sister City.
      Algorym SI nie działa jednak przypadkowo. Wykorzystuje dane ze stacji pogodowej i kamery umieszczonych na dachu hotelu. Bierze pod uwagę porę dnia, ciśnienie, wschody i zachody słońca, opady, zachmurzenie i inne czynniki, które wpływają na nasz nastrój. Na tej podstawie z dostępnego archiwum tworzy muzykę, która najlepiej ma odpowiadać nastrojowi ludzi.
      To już kolejny tego typu projekt, w którym uczestniczą Microsoft i hotel Sister City. Pierwszy uruchomiono wraz z otwarciem hotelu w kwietniu ubiegłego roku. Wówczas goście hotelowi mogli słuchać muzyki stworzonej przez sztuczną inteligencję na bazie twórczości Julianny Barwick.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Linie Quantas wykonały najdłuższy w historii przelot pasażerski bez międzylądowania. Lot QF7879 wystartował z Nowego Jorkuk i po 19 godzinach oraz 16 minutach wylądował w Sydney. Linie lotnicze mają nadzieję, że w przyszłości długodystansowe loty bez międzylądowania będą cieszyły się zainteresowaniem pasażerów.
      Podczas testowego lotu na pokładzie Boeinga 787-9 znajdowało się zaledwie 49 osób. Niewielkie obciążenie było koniecznością, by maszyna mogła przebyć ponad 16 000 kilometrów bez konieczności tankowania.
      To pierwszy z trzech lotów testowych, w czasie których chcemy sprawdzić, jak radzić sobie ze zmęczeniem pilotów oraz jak pomóc pasażerom w przezwyciężeniu problemu zmiany stref czasowych, mówi Alan Joyce, dyrektor wykonawczy Quantas. We współpracy z 2 australijskimi uniwersytetami linie Quantas prowadzą badania nad tym, jak wielokrotna zmiana stref czasowych wpływa na zdrowie pasażerów i załogi.
      Podczas wspomnianego lotu zaraz po wejściu na pokład pasażerowie ustawili zegarki na czas Sydney i byli utrzymywani w stanie czuwania za pomocą oświetlenia, ćwiczeń fizycznych, kofeiny i pikantnych przypraw. Gdy sześć godzin później nad wschodnią Australią zapadła noc, światła przytłumiono. zaserwowano posiłek bogaty w węglowodany i poproszono pasażerów, by nie korzystali z ekranów. Zachęcano ich, by poszli spać.
      Profesor Marie Carrol z Sydney University, która nadzorowała eksperyment, powiedziała, że ma nadzieję, iż w ten sposób pasażerowie będą odczuwali tylko minimalne niedogodności związane ze zmianą strefy czasowej. Sprawdzimy, czy linie lotnicze mogą dostosować pory posiłków, napojów, ćwiczenia i oświetlenie tak, by były one zsynchronizowane z czasem przylotu samolotu, mówi uczona.
      Na pokładzie maszyny znajdowało się czterech pilotów, którzy pracowali na zmiany. Nosili oni urządzenia badające ich czujność oraz rejestrujące fale mózgowe. Australijskie i międzynarodowe związki zawodowe pilotów wyrażały obawy, czy piloci będą mogli odpocząć w odpowiednich warunkach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Google twierdzi, że zbudowany przez tę firmę komputer osiągnął kwantową supremację, czyli wykonał obliczenia, których klasyczny komputer nie jest w stanie wykonać w rozsądnym casie. Jeśli to prawda, możemy mieć do czynienia z prawdziwym przełomem na polu informatyki kwantowej. Dotychczas bowiem komputery kwantowe nie dorównywały komputerom klasycznym.
      Cała sprawa jest jednak otoczona tajemnicą. Prace Google'a zostały bowiem opisane w dokumencie, który niedawno został umieszczony na serwerze NASA. Jednak dokument szybko stamtąd usunięto. Przedstawiciele Google'a odmawiają komentarza w tej sprawie.
      W dokumencie opisano procesor kwantowy o nazwie Sycamore, który ma zawierać 54 kubity. To właśnie on miał osiągnąć kwantową supremację. Wymieniony został też tylko jeden autor artykułu, John Martinias z Uniwersytetu Kalifornijskiego w Santa Barbara. Wiadomo, że pracuje on dla Google'a nad sprzętem dla komputerów kwantowych. Wiadomo też, że w 2018 roku Google i NASA zawarły porozumienie, w ramach którego agencja kosmiczna miała pomóc Google'owi w testach kwantowej maszyny. Wspomniany dokument opisuje, w jaki sposób procesor Sycamore rozwiązał problem prawdziwego rozkładu losowego liczb. Tego typu problemy są niezwykle trudne dla komputerów klasycznych.
      Ci, którzy czytali dokument mówią, że jeden z kubitów procesora nie działał, ale pozostałe 53 zostały splątane, wygenerowały przypadkowy zestaw liczb w systemie dwójkowym i sprawdziły, czy rzeczywiście ich rozkład jest przypadkowy. Autorzy artykułu obliczyli, że wykonanie takiego zadania zajęłoby Summitowi, najpotężniejszemu klasycznemu superkomputerowi na świecie aż 10 000 lat. Procesor Sycamore wykonał je w 200 sekund.
      Autorzy artykułu przyznają, że użyty algorytm nie przyda się do niczego więcej niż do generowania prawdziwych liczb losowych. Jednak w przyszłości podobny procesor może być przydatny w maszynowym uczeniu się, chemii czy naukach materiałowych.
      Osiągnięcie kwantowej supremacji przez Google'a to ważny krok w informatyce kwantowej, mówi Jim Clarke z Intel Labs. Ekspert dodaje, że wciąż jesteśmy na początku drogi. To, co osiągnął Google było jedynie demonstracją i to nie wolną od błędów. Jednak w przyszłości będą budowane większe potężniejsze procesory kwantowe, zdolne do wykonywania bardziej użytecznych obliczeń.

      « powrót do artykułu
×
×
  • Create New...