Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Antyutleniacze na utratę słuchu
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Materiały stosowane w biomedycynie muszą cechować się kontrolowaną biodegradowalnością, odpowiednią wytrzymałością i całkowitym brakiem toksyczności dla ludzkiego organizmu. Poszukiwanie takich materiałów nie jest więc prostym zadaniem. W tym kontekście naukowcy od dłuższego czasu interesują się magnezem. Wykorzystując między innymi spektroskopię anihilacji pozytonów, badaczom udało się wykazać, że magnez poddany powierzchniowej obróbce mechaniczno-ściernej uzyskuje niezbędne dla materiału biokompatybilnego właściwości.
W ostatnim czasie coraz większe zainteresowanie zyskują materiały korodujące w sposób kontrolowany. W szczególności dotyczy to biomedycyny, gdzie stosuje się implanty wykonane z polimerów naturalnych lub syntetycznych. Ich zaletą jest łatwość dostosowania szybkości rozkładu w warunkach fizjologicznych. Z drugiej strony, właściwości mechaniczne tych materiałów ulegają pogorszeniu w środowisku organizmu ludzkiego, przez co nie nadają się do zastosowań narażonych na duże obciążenia. Z tego powodu dobrym rozwiązaniem wydają się implanty metaliczne, stworzone na bazie całkowicie nieszkodliwego dla ludzkiego organizmu magnezu.
Ze względu na swoje właściwości mechaniczne, termiczne i elektryczne oraz biodegradowalność, a także kontrolowane tempo korozji, magnez wzbudza duże zainteresowanie badaczy zajmujących się biokompatybilnymi implantami. Pomimo tych zalet, zastosowanie magnezu jako biomateriału używanego przy produkcji implantów okazało się niełatwe ze względu na stosunkowo wysoką szybkość korozji w środowisku ludzkiego ciała. Problem ten da się jednak pokonać, stosując odpowiednie powłoki.
W trakcie wieloletnich badań zauważono, że rozdrobnienie mikrostruktury materiałów nie tylko poprawia ich właściwości mechaniczne, ale może także wyraźnie zwiększyć odporność korozyjną. Dlatego międzynarodowy zespół naukowy, kierowany przez dr hab. Ewę Dryzek z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie, postawił sobie za cel ilościowe zbadanie wpływu powierzchniowej obróbki mechaniczno-ściernej SMAT (Surface Mechanical Attrition Treatment) komercyjnego magnezu na jego odporność korozyjną. W tej metodzie duża liczba twardych kulek o średnicy kilku milimetrów uderza w powierzchnię obrabianego materiału, powodując odkształcenie plastyczne warstwy przypowierzchniowej lub warstwy leżącej tuż pod nią. Odkształceniu plastycznemu towarzyszy wytworzenie dużej liczby defektów sieci krystalicznej.
Do scharakteryzowania mikrostruktury zastosowano typowe techniki badawcze, np. mikroskopię świetlną i elektronową, dyfrakcję promieni rentgenowskich oraz elektronów rozproszonych wstecznie, a także pomiary mikrotwardości.
Badania mikroskopowe ujawniły stopniowo zmieniającą się mikrostrukturę warstwy wierzchniej materiału powstałej podczas obróbki SMAT. Zaobserwowaliśmy znaczne rozdrobnienie ziaren w pobliżu obrobionej powierzchni. Głębiej widoczne były bliźniaki odkształcenia, których gęstość malała wraz ze wzrostem odległości od tej powierzchni – wyjaśnia dr hab. Dryzek.
W ramach opisywanych prac po raz pierwszy użyto również spektroskopii anihilacji pozytonów PAS (Positron Annihilation Spectroscopy). Technika ta jest metodą nieniszczącą i pozwala na identyfikację defektów sieci krystalicznej na poziomie atomowym. Polega ona na tym, że gdy pozytony trafiające do próbki materiału napotykają swoje antycząstki – elektrony – anihilują i zamieniają się w fotony, które można rejestrować. Pozyton, który na swojej drodze znajdzie puste miejsce w sieci krystalicznej, może zostać schwytany, co wydłuża czas do momentu jego anihilacji. Pomiar czasu życia pozytonów daje badaczom obraz struktury próbki na poziomie atomowym.
Celem zastosowania tej metody było, między innymi, uzyskanie informacji na temat rozkładu defektów sieci krystalicznej w warstwie powierzchniowej powstałej w wyniku obróbki SMAT, a także badanie warstwy materiału o grubości rzędu kilku mikrometrów, leżącej tuż pod obrobioną powierzchnią oraz powiązanie uzyskanych informacji z własnościami korozyjnymi. Jest to o tyle ważne, że defekty sieci krystalicznej determinują kluczowe właściwości materiałów. Z tego względu procedura ta znajduje również zastosowanie w metalurgii i technologiach półprzewodnikowych.
Średni czas życia pozytonów w warstwie o grubości 200 mikrometrów, uzyskanej w wyniku trwającej 120 sekund obróbki SMAT, wykazuje wysoką stałą wartość 244 pikosekund. Oznacza to, że wszystkie emitowane ze źródła pozytony docierające do tej warstwy anihilują w defektach struktury, którymi są wakancje – czyli braki atomów w węzłach sieci krystalicznej – związane z dyslokacjami. Warstwa ta odpowiada silnie odkształconemu obszarowi z rozdrobnionymi ziarnami. Głębiej średni czas życia pozytonów maleje, co wskazuje na zmniejszającą się koncentrację defektów, osiągając w odległości około 1 milimetra od powierzchni wartość charakterystyczną dla dobrze wygrzanego magnezu o stosunkowo małej gęstości defektów struktury, który stanowił materiał porównawczy – opisuje szczegóły prac doktorant Konrad Skowron, główny autor artykułu i pomysłodawca badań.
Proces SMAT w istotny sposób wpłynął także na zachowanie próbek magnezu podczas elektrochemicznych testów korozyjnych. Zmiany struktury wywołane przez SMAT zwiększyły podatność magnezu na utlenianie anodowe, intensyfikując tworzenie się powłoki wodorotlenkowej na powierzchni oraz w konsekwencji prowadząc do lepszej odporności na korozję. Potwierdzają to dane uzyskane dzięki użyciu wiązki pozytonów w Zjednoczonym Instytucie Badań Jądrowych w Dubnej. Wyniki pokazują, że oprócz granic ziaren i podziaren obecnych na powierzchni, także inne defekty krystaliczne, takie jak dyslokacje i wakancje, mogą odgrywać istotną rolę w zachowaniu korozyjnym magnezu.
Obecnie prowadzimy analogiczne badania dla tytanu. Tytan jest metalem szeroko stosowanym w lotnictwie, motoryzacji, energetyce i przemyśle chemicznym. Służy również jako materiał do produkcji urządzeń i implantów biomedycznych. Ekonomicznie akceptowalna metoda, umożliwiająca uzyskanie czystego tytanu o mikrostrukturze gradientowej z ziarnem o wielkości nanometrycznej w warstwach przylegających do powierzchni, może otworzyć szersze perspektywy zastosowania tytanu w wyrobach ważnych dla gospodarki i dla poprawy komfortu życia człowieka – mówi dr hab. Dryzek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Amerykańscy lekarze informują o zidentyfikowaniu 17 osób, które odziedziczyły mitochondrialne DNA po obojgu rodzicach. U ssaków dziedziczenie mitochondrialnego DNA odbywa się niemal wyłącznie po matce. Wydaje się, że odnalezione osoby stanowią bardzo rzadki wyjątek od reguły. Prawdopodobnie dlatego, że w ich rodzinach występują mutacje, które zaburzają mechanizm uniemożliwiający przekazywanie mitochondrialnego DNA z ojców na dzieci.
Mitochondria to centra energetyczne komórek. Znajdują się w każdej komórce naszego ciała, w tym w jaju i plemnikach. Jednak gdy plemnik wnika do jaja, jego mitochondria są znakowane i niszczone. Dlatego też mitochondrialne DNA dziedziczymy wyłącznie po matce.
W 2002 roku doniesiono o zidentyfikowaniu mężczyzny, który odziedziczył mitochondrialne DNA po obojgu rodziców. Jednak, jako że dotychczas nie znaleziono drugiego takiego przypadku, pojawiły się poważne wątpliwości, co do rzetelności tamtych badań. Teraz naukowcy z Cincinnati Children's Hospital Medical Center poinformowali o zdobyciu jednoznacznych dowodów, że 17 osób odziedziczyło mitochondrialne DNA po obojgu rodziców.
Pierwszą zidentyfikowaną w Cincinnati osobą był pacjent, który zgłosił się z powodu chronicznego zmęczenia i bólu mięśni. Lekarze podejrzewali, że zostało to spowodowane przez mutację w mitochondriach, wykonali więc odpowiednie badania i odkryli, że pacjent odziedziczył mitochondrialne DNA po obojgu rodziców. Dalsze badania wykazały, że również inni członkowie rodziny mają mieszankę mitochondrialnego DNA po obojgu rodzicach. Następnie lekarze sprawdzili DNA niektórych innych pacjentów z podobnymi bólami mięśni i zmęczeniem. Znaleźli kolejne dwie rodziny z taką mutacją.
Prawdziwą niespodzianką jest fakt, że nie znaleziono więcej takich przypadków", mówi Nick Lane z University College London. To autor książki na temat mitochondriów. W ubiegłym roku jego zespół przewidywał, że przedostanie się DNA ojca do mitochondriów dziecka powinno być dość częstym zjawiskiem. Zdaniem Lane'a takie zjawisko może zachodzić, gdyż w grę wchodzą tutaj dwie przeciwne sobie mechanizmy ewolucyjne. W krótkim terminie odziedziczenie mitochondriów również po ojcu może na przykład kompensować szkodliwe mutacje w mitochondriach matki. Jednak w długim terminie mogłoby to uniemożliwić ewolucyjne usuwanie takich mutacji, gdyż byłyby one przykryte przez prawidłowe mitochondria ojca. Lane uważa, że właśnie dlatego ewolucja wypracowała niezwykle dużą liczbę mechanizmów, które miały zapewniać, że mitochondria dziedziczy się tylko po matce. Uważa on, że w toku ewolucji mechanizmy takie wielokrotnie się pojawiały, znikały i ponownie pojawiały.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na Uniwersytecie Australii Zachodniej (UWA) powstał preparat farmaceutyczny z midazolamem, lekiem podawanym jako premedykacja przez zabiegami chirurgicznymi, w którego skład wchodzi maskująca gorzki smak czekolada. Dzięki temu dzieci chętnie go zażywają, a skuteczność leku nie odbiega od wersji standardowej.
Jak tłumaczą Australijczycy, oczywiście w tabletce znajduje się nie tylko czekolada. Kilka składników działa synergicznie, by jednocześnie zamaskować gorzki lek i zapewnić stabilność w temperaturze pokojowej.
Zespół UWA testował 150-osobową grupę. Okazało się, że większość dzieci dostających tabletkę smakującą jak czekolada wyrażała chęć ponownego zażycia.
Dr Sam Salman podkreśla, że niekorzystny smak wielu leków, w tym midazolamu, stanowi poważną trudność w terapii dzieci. Wiele dzieci ma opory przed zażyciem leków, w tym wykorzystywanych do premedykacji (mają one bardzo gorzki smak, który często trudno zamaskować). To może powodować niepokój u chorych maluchów, rodziców i personelu medycznego oraz narażać na szwank skuteczność leku, a także i tak już nadwątlone zdrowie. Nieważne, jak silny jest lek: jeśli dziecko nie będzie go chciało przyjąć, nie będzie skuteczny.
Salman dodaje, że stworzenie dobrze smakującego leku nie jest proste i nie polega po prostu na stopieniu czekolady i włożeniu do niej leku. Potrzeba dopracowanej formuły, który m.in. zamaskuje smak, będzie miała długi czas przydatności do spożycia i nie zmniejszy skuteczności substancji czynnej.
Prof. farmacji Lee Yong Lim i anestezjolog dziecięcy Britta Regli-von-Ungern-Sternberg podkreślają, że preparat odniósł sukces (smak czekoladowej formy wolało 5-krotnie więcej dzieci) i został dobrze przyjęty także przez pielęgniarki i rodziców.
W Szpitalu Pediatrycznym w Perth prowadzone są wstępne testy tej samej formuły z innym lekiem. Tutaj wyniki również są dobre, więc Australijczycy myślą o badaniach z antybiotykami.
Do plusów opisywanego preparatu zalicza się dokładność dawkowania (w porównaniu do płynów), a także możliwość roztopienia czy przeżucia w przypadku dzieci z zaburzeniami połykania. Oprócz tego preparat można długo przechowywać w warunkach niechłodniczych.
Obecnie ekipa szuka partnera przemysłowego, który pomoże w komercjalizacji produktu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Kakao poprawia funkcjonowanie mięśni szkieletowych. Dzieje się tak dzięki regeneracji ich centrów energetycznych - mitochondriów.
Niewielkie studium przeprowadzone przez naukowców ze Szkoły Medycyny Uniwersytetu Kalifornijskiego w San Diego i VA San Diego Healthcare System (VASDHS) wykazało, że po 3 miesiącach terapii kakao wzbogaconym epikatechiną u pacjentów z zaawansowaną niewydolnością serca i cukrzycą typu 2. poprawiła się struktura mitochondriów. Zachęceni wynikami Amerykanie rozpoczęli testy kliniczne na szerszą skalę, w których uwzględniono grupę kontrolną. Ich celem jest ustalenie, czy pod wpływem terapii kakao z dodatkiem epikatechiny wzrośnie wydolność wysiłkowa osób z wymienionymi wyżej dolegliwościami.
Początkowo Amerykanie skupili się na przypadkach 5 pacjentów z poważnymi uszkodzeniami mitochondriów mięśni szkieletowych. Do dysfunkcji tych organelli dochodzi zarówno pod wpływem cukrzycy typu 2., jak i niewydolności serca. Anomalie dotyczące mięśni szkieletowych oraz mięśnia sercowego wiążą się z obniżoną wydolnością funkcjonalną, objawiającą się zadyszką czy brakiem energii.
Ochotnicy jedli gorzką czekoladę i pili napoje czekoladowe, dzięki czemu przez 3 miesiące dziennie dostarczali swojemu organizmowi ok. 100 mg epitakechiny. Przed i po eksperymencie wykonywano biopsje mięśni szkieletowych. Oceniano zarówno objętość mitochondriów, jak i liczbę grzebieni (łac. cristae). U chorych dostrzegliśmy poważne uszkodzenia i zmniejszenie liczebności grzebieni. Po 3 miesiącach zaszła regeneracja - liczba cristae powróciła do normy. Nastąpił też wzrost kilku molekularnych markerów, zaangażowanych w powstawanie nowych mitochondriów - opowiada dr Francisco J. Villarreal.
-
przez KopalniaWiedzy.pl
Jeśli ktoś próbuje rzucić palenie, ale nic z tego nie wychodzi, naukowcy z Uniwersytetu Cornella proponują pewne połowiczne, ale było nie było, korzystne dla zdrowia rozwiązanie - papierosy z filtrem zawierającym ekstrakty naturalnych przeciwutleniaczy, które znacznie zmniejszają ilość przechodzących do dymu wolnych rodników. W filtrach wykorzystano likopen i wyciąg z pestek winogron.
Jak twierdzi doktor Boris Dzilkovski, współautor artykułu z Journal of Visualized Experiments, technika może znacznie ograniczyć zagrożenia zdrowotne wynikające z palenia papierosów, ponieważ wolne rodniki są ważną grupą związków rakotwórczych.
Naukowcy już wcześniej pracowali nad tzw. biofiltrami, w których wykorzystywano hemoglobinę oraz węgiel aktywny i mimo że wykazano, że hemoglobina i związki zawierające grupę hemową częściowo usuwają tlenek azotu(II), reaktywne formy tlenu oraz lotne związki nitrozowe, rozwiązań tych nie skomercjalizowano ze względu na koszty. Relacjonując przebieg badań nad biofiltrami, nie sposób nie wspomnieć o szikoninie, która reprezentuje grupę fitoaleksyn, czyli niskocząsteczkowych związków przeciwdrobnoustrojowych, syntetyzowanych i gromadzonych przez rośliny. Wykorzystywana w medycynie chińskiej szikonina występuje w warstwie korowej korzeni wielu roślin z rodziny Boraginaceae.
Podczas badań z filtrami z likopenem i ekstraktem z pestek winogron naukowcy posłużyli się spektroskopią rezonansu spinowego elektronowego. Aby wprowadzić przeciwutleniacze do standardowego filtra z octanu celulozy (0,4 mg/filtr), piknogenol i ekstrakt z pestek winogron rozpuszczono w 95% etanolu, a likopen w acetonie. Objętości rozpuszczalnika były różne, zależnie od rozpuszczalności przeciwutleniaczy. Następnie pokryto je 10 mg węgla aktywnego. W tym celu przez ok. 12 godzin węgiel wirowano w warunkach beztlenowych z roztworem przeciwutleniaczy, a potem filtrowano i suszono.
Filtr przecięto na pół, między tak uzyskanymi arkusikami umieszczono zaimpregnowane węglem aktywnym przeciwutleniacze, a całość sklejono taśmą. Filtr kontrolny sporządzono dokładnie w ten sam sposób, ale w środku nie znalazły się, oczywiście, antyoksydanty. Oba filtry przymocowano do fifki z tytoniem. Przed symulacją palenia papierosy trzymano przez minimum 2 dni w temperaturze 20 st. Celsjusza i wilgotności względnej równej 60%, używając nasyconego roztworu bromku sodu (NaBr).
Naukowcy stwierdzili, że likopen i wyciąg z pestek winogron szybko usuwają do 90% wolnych rodników fazy gazowej dymu. Niestety, po tygodniu przechowywania w temperaturze pokojowej filtry autorstwa Dzilkovskiego, Jacka H. Freeda i Long-Xi Yu traciły sporą część pojemności wychwytującej.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.