Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Granie na instrumentach wspomaga działanie mózgu oraz polepsza słyszenie wszystkich rodzajów dźwięków, w tym mowy.

Doświadczenie muzyczne wydaje się pomagać w innych dziedzinach życia, przenosząc się na takie czynności, jak czytanie, wychwytywanie niuansów w tonie głosu czy lepsze słyszenie dźwięków w rozsadzanej hałasem klasie — wyjaśnia Nina Kraus, neurolog z Northwestern University. Według niej, opisane odkrycie uzasadnia zachowanie lekcji muzyki w szkolnym programie nauczania. Kiedy trzeba jakoś sprostać wymogom budżetu, jako pierwsze "obcina się" właśnie lekcje muzyki. A to duży błąd.

W eksperymencie wzięło udział 20 dorosłych wolontariuszy. Oglądali wybrany przez siebie film. Największą popularnością cieszyły się ponoć obrazy Faceci w czerni, Iniemamocni oraz Medal dla miss. Połowa badanych przez co najmniej 6 lat uczyła się gry na jakimś instrumencie, a nauka rozpoczęła się, zanim skończyli 12 lat. Edukacja muzyczna pozostałych nie trwała dłużej niż 3 lata. Dla wszystkich językiem ojczystym był angielski, nigdy też nie uczyli się mandaryńskiego.

Podczas seansu badani słyszeli w tle słowa pochodzące właśnie z mandaryńskiego. Brzmiały jak "mi" i miały głośność zwykłej rozmowy. Język mandaryński jest językiem tonalnym, można w nim wyróżnić 4 tony: wysoki (yīnpíng), wznoszący (yángpíng), opadająco-wznoszący (shǎngshēng) i opadający (qùshēng). W związku z tym jednakowo zapisywany wyraz może mieć kilka różnych znaczeń, w zależności od zastosowanego tonu. Mi w tonie wysokim oznacza "mrugać", "zezować", w tonie wznoszącym "zbijać z tropu", "dezorientować", a w tonie opadająco-wznoszącym "ryż".

Przez cały czas monitorowano aktywność mózgu. Pomimo że uwaga wolontariuszy koncentrowała się na filmie, a dźwięki nie miały dla nich znaczenia językowego ani muzycznego, osoby dłużej grające na instrumencie osiągały lepsze wyniki w odróżnianiu od siebie 3 tonacji mandaryńskiego — opowiada Patrick Wong z Northwestern University. Zjawisko to występuje w mniejszym lub większym stopniu u zwykłych ludzi. Nie trzeba być wybitnym muzykiem, by umieć to robić.

Zmiany zachodzące pod wpływem muzyki dokonywały się w pniu mózgu, który zawiaduje m.in. oddychaniem czy biciem serca. Zawsze sądzono, że jest ona domeną kory mózgowej, a pień uznawano za twór niezmienny i niezaangażowany w skomplikowane procesy konieczne do gry na instrumencie (Nature Neuroscience). Sądzimy, że muzyka uruchamia wyższe funkcje zlokalizowane w korze, które z kolei zmieniają pień mózgu.

W dalszej kolejności Kraus chce znaleźć odpowiedzi na kolejne pytania: 1) w jakim wieku należy zacząć trening, 2) czy poprzez naukę muzyki można pomóc dzieciom z zaburzeniami czytania oraz pisania i wreszcie 3) ile lat trzeba mieć, by dało się zauważyć efekty.

Share this post


Link to post
Share on other sites

Nie od dzisiaj wiadomo, ze muzyka rozwiaja i uszlachetnia. Ja sama zajmuje sie muzyka ;D Znam wielu ludzi ze srodowiska muzycznego i zauwazylam to juz nie raz, ze zasadniczo roznia sie oni od pozostalych osob. Muzyka ma w sobie cos takiego, co uwrazliwia czlowieka i sprawia, iz staje sie on bardziej czuly na rozmaite czynniki. Jak wiadomo, im dalej w las, tym wiecej grzybow, zatem im ktos dluzej zajmuje sie muzyka, tym bardziej wyostrzaja mu sie zmysly. Muzyka potrafi leczyc z roznych chorob (szczegolnie tych natury psychologicznej) i jest po prostu "lekiem na cale zlo". Dlatego tez warto sluchac muzyki, a przede wszystkim uslyszec ja i zrozumiec, a wtedy swiat, razem ze wszystkimi swoimi wadami, stanie sie duzo piekniejszy.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dotychczas sądzono, że struktury w naszym mózgu, które umożliwiły rozwój mowy, pojawiły się w nim przed 5 milionami lat. Teraz międzynarodowy zespół naukowy przesunął ten termin i to znacznie. Europejscy i amerykańscy uczeni twierdzą, że początków takich struktur należy szukać co najmniej 25 milionów lat temu. Odkrycie opisano na łamach Nature.
      Znalezienie takiej struktury jest dla neurologów jak znalezienie skamieniałości, która rzuca nowe światło na ewolucję. Musimy jednak pamiętać, że mózgi nie ulegają fosylizacji. Dlatego też eksperci muszą próbować odtwarzać ewolucję mózgu porównując mózgi obecnie żyjących naczelnych i człowieka.
      Kluczową strukturą dla rozwoju mowy jest pęczek łukowaty (AF). To wiązka włókien kojarzeniowych rozciągających się od płata skroniowego po płat czołowy. Zespół z USA, Wielkiej Brytanii i Niemiec wykorzystał ogólnodostępne skany mózgu człowieka, szympansa i makaka królewskiego, a następnie przeprowadził analizę odpowiednich obszarów. Uczeni odkryli istnienie homologicznej struktury rozpoczynającej się w korze słuchowej.
      Wiadomo, że szympansy posiadają strukturę homologiczną (czyli mającą wspólne z człowiekiem pochodzenie ewolucyjne) do ludzkiego pęczka łukowatego, ale istnieją już spory co do tego, że podobna struktura występuje u makaków. Ostatnie dowody naukowe wskazują, że różnicowanie się pęczka łukowatego jest związane z rozrastaniem się zakrętu skroniowego środkowego (MTG). To wyróżniająca się struktura u ludzi, która jest wyraźnie widoczna też u szympansów, ale nie stwierdzono jej u nieczłowiekowatych.
      Autorzy najnowszych badań postanowili sprawdzić, czy struktura homologiczna do AF może u nieczłowiekowatych istnieć pomimo braku u nich MTG. Mogliśmy tylko przypuszczać, ale nie byliśmy pewni, czy u nieczłowiekowatych istnieją homologiczne struktury, co u człowieka. Przyznam, że byłem zaskoczony ich odkryciem, mówi profesor Chris Petkov z Newcastle University.
      Badania te rzucają nowe światło na ewolucyjne początku AF. Wskazują na fragment AF związany ze zmysłem słuchu i dowodzą istnienia homologicznej struktury u szympansów i makaka królewskiego, czytamy w opublikowanej pracy. Okazało się też, że o ile u małp nieczłowiekowatych AF jest dość symetryczna, to u ludzi występuje silna asymetria, z bardziej rozwiniętą lewą stroną struktury, która odgrywa zasadniczą rolę w rozwoju mowy.
      Biorąc pod uwagę fakt, że asymetria taka występuje też u szympansów, można stwierdzić, że struktury w mózgu potrzebne do pojawienia się mowy zaczęły przybierać ostateczną formę u wspólnego przodka człowieka i małp człowiekowatych, z późniejszym jeszcze różnicowaniem u naszych bezpośrednich przodków. Jednak obecne badania wskazują, że wspólni przodkowie małp i małp człekokształtnych posiadali symetryczną strukturę łączącą części płata skroniowego odpowiedzialne za słuch z dolną częścią płata czołowego. U ludzi w tych obszarach znajdują się dwie niezwykle ważne dla rozwoju mowy struktury – ośrodek Wernickiego i ośrodek Broki.
      Nasze badania przesunęły pojawienie się prototypu AF odpowiedzialnego za rozpoznawanie mowy do czasu ostatniego wspólnego przodka ludzi i makaków (około 25 milionów lat temu), podczas gdy do niedawna sądzono, że początków tych struktur należy szukać u ostatniego wspólnego przodka ludzi i szympansów sprzed około 5 milionów lat, stwierdzili autorzy odkrycia. Nasze obserwacje zgadzają się też z hipotezą, że zdolność do przetwarzania języka rozwinęła się ze struktur odpowiedzialnych za słuch, dodają.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Popularny pogląd mówi, że słuchanie muzyki zwiększa kreatywność. Jednak badania przeprowadzone przez psychologów z brytyjskich University of Central Lancashire, Lancaster University oraz szwedzkiego Uniwersytetu w Gavle pokazują, że wpływ muzyki na kreatywność jest negatywny.
      Osoby biorące udział w eksperymencie zostały postawione przed problemami, których rozwiązanie wymagało kreatywności werbalnej. Jednocześnie w tle puszczano muzykę. Okazało się, że muzyka w tle „znacząco upośledza” zdolność ludzi do wykonania zadań wymagających kreatywności słownej. Co interesujące, takiego negatywnego wpływu nie zauważono, gdy w tle był szum typowy dla biblioteki lub było cicho.
      Na przykład w ramach eksperymentów badanym pokazywano trzy wyrazy (np. dress, dial, flower), a ich zadaniem było znalezienie takiego jednego skojarzonego z nimi wyrazu, który pozwalał na stworzenie innego znanego słowa. W tym przypadku wyrazem takim był „sun”, a tworzone słowa to „sundress”, „sundial” i „sunflower”. Zadanie było wykonywane albo przy odgłosach typowych dla biblioteki, albo gdy w tle puszczano jeden z trzech rodzajów muzyki – muzykę z nieznanym badanym tekstem w obcym języku, muzykę instrumentalną bez śpiewu, muzykę ze znanym tekstem.
      Znaleźliśmy silne dowody na to, że gdy w tle puszczano muzykę to, w porównaniu z ciszą, znacząco ograniczała ona możliwości badanych, mówi doktor Neil McLatchie z Lancaster University.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Leki na nadciśnienie działają silniej u pacjentów, którzy po ich zażyciu słuchają muzyki. Najlepsza do tego celu wydaje się muzyka klasyczna.
      Brazylijsko-brytyjski zespół spekuluje, że muzyka oddziałuje na układ parasympatyczny, zwiększając wchłanianie leku.
      Zaobserwowaliśmy, że muzyka poprawiała tętno i działanie leków przeciwnadciśnieniowych przez mniej więcej godzinę od ich zażycia - opowiada prof. Vitor Engrácia Valenti z Uniwersytetu Stanowego São Paulo w Marílii (UNESP Marília).
      Parę lat temu naukowcy z UNESP Marília zaczęli badać wpływ muzyki na serce w warunkach stresu. Stwierdzono m.in., że muzyka klasyczna obniża tętno. Zaobserwowaliśmy, że muzyka klasyczna pobudza układ parasympatyczny i zmniejsza aktywność układu sympatycznego. Układy parasympatyczny i sympatyczny (in. przywspółczulny i współczulny) są działającymi przeciwstawnie podukładami autonomicznego układu nerwowego. Przywspółczulny odpowiada za odpoczynek i poprawę trawienia, zaś współczulny za mobilizację organizmu.
      Bazując na wstępnych spostrzeżeniach, naukowcy postanowili sprawdzić, jak stymulacja muzyczna oddziałuje na zmienność rytmu zatokowego w codziennych sytuacjach, np. w ramach terapii nadciśnienia.
      Wcześniejsze badania wykazały, że muzykoterapia wywiera znaczący pozytywny wpływ na ciśnienie u pacjentów z nadciśnieniem. Nie było jednak jasne, czy muzyka może modulować oddziaływanie leków na zmienność rytmu zatokowego, a także na ciśnienia skurczowe i rozkurczowe - zaznacza Valenti.
      W najnowszym eksperymencie wzięło udział 37 osób z dobrze kontrolowanym nadciśnieniem. Pacjenci leczyli się od 6 miesięcy do 1 roku. Pomiary tętna i ciśnienia przeprowadzano 2-krotnie (w losowych dniach) w odstępie 48 godzin.
      Jednego dnia po zażyciu doustnego leku ochotnicy przez godzinę słuchali muzyki instrumentalnej przez słuchawki (głośność cały czas była taka sama). Innego dnia badani przechodzili ten sam protokół, ale słuchawki nie były włączone.
      Zmienność rytmu zatokowego mierzono w spoczynku 10 min przed połknięciem tabletki, a także 20, 40 i 60 min od zażycia leku. Analiza danych wykazała, że gdy pacjenci słuchali muzyki, tętno spadało znacząco w porównaniu do protokołu kontrolnego. Podczas słuchania muzyki ciśnienie także silniej reagowało na leki.
      Jedna z hipotez wysnutych przez autorów publikacji z pisma Scientific Reports jest taka, że muzyka stymuluje układ parasympatyczny, zwiększając aktywność układu trawiennego. To zaś przyspiesza wchłanianie leków, zwiększając ich wpływ na tętno.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Skany mózgu dwóch szczepów myszy wypijających znaczne ilości alkoholu ujawniły, że u zwierząt pozbawionych receptorów dopaminy DRD2 dochodzi do zmniejszenia objętości kory mózgowej i wzgórza. Oznacza to, że receptory DRD2 zabezpieczają przed uszkodzeniami mózgu przez alkohol.
      Dr Foteini Delis, neuroanatom z Behavioral Neuropharmacology and Neuroimaging Lab w Brookhaven, przypomina, że już wcześniejsze odkrycia sugerowały, że receptory dopaminowe D2 chronią przed uzależniającym wpływem alkoholu.
      W ramach najnowszego studium Amerykanie sprawdzali, jak spożycie alkoholu oddziałuje na ogólną objętość mózgu oraz objętość poszczególnych struktur/rejonów u zwykłych myszy oraz gryzoni z wyeliminowanym genem receptorów dopaminowych D2. Przez pół roku połowa każdej z grup piła czystą wodę, a reszta 20-procentowy etanol. Po upływie tego czasu mózg wszystkich zwierząt zbadano za pomocą rezonansu magnetycznego.
      Okazało się, że przewlekłe spożycie alkoholu prowadziło do ogólnej atrofii mózgu, oraz zmniejszenia objętości kory i wzgórza, ale tylko u zwierząt z brakującymi receptorami DRD2. Jeden z członków zespołu, Peter Tanatos, podkreśla, że uszkodzenia mózgu przypominały te widywane u alkoholików, dlatego myszy stanowią wiarygodny model badań. U ludzi te rejony mózgu są krytyczne dla przetwarzania mowy, danych czuciowych oraz sygnałów ruchowych, a także tworzenia długotrwałych wspomnień. Poziom DRD2 poniżej normy zwiększa jednostkową podatność na uszkadzające działanie alkoholu. Ponieważ oznacza on także podwyższone ryzyko uzależnienia, staje się jasne, że to układ dopaminergiczny powinien się stać przedmiotem badań nad istotą i leczeniem alkoholizmu.
    • By KopalniaWiedzy.pl
      Wykształcenie i doświadczenie muzyczne mają biologiczny wpływ na proces starzenia. Dotąd zakładano, że związane z wiekiem opóźnienia w procesie czasowania neuronalnego są nieuniknione. Można je jednak wyeliminować lub skompensować właśnie dzięki "uprawianiu" muzyki.
      Naukowcy z Northwestern University mierzyli automatyczne reakcje mózgu starszych i młodszych muzyków oraz niemuzyków na dźwięki mowy. Okazało się, że starsi muzycy nie tylko wypadali lepiej od niezwiązanych z muzyką rówieśników, ale i odkodowywali dźwięk tak samo dokładnie i szybko jak młodsi niemuzycy. To wspiera teorię, że stopień, do jakiego aktywnie doświadczamy dźwięków w ciągu życia, wywiera pogłębiony wpływ na działanie naszego układu nerwowego - podkreśla Nina Kraus.
      Wytrenowany mózg jest w stanie częściowo przezwyciężyć związaną ze starzeniem utratę słuchu. Co więcej, pomaga nawet edukacja rozpoczęta w jesieni życia. Wcześniej Kraus wykazała, że doświadczenia muzyczne mogą kompensować ubytki pamięciowe i problemy ze słyszeniem mowy w hałaśliwym środowisku - dwie bolączki starszych osób. Jej laboratorium badało wpływ doświadczeń muzycznych na plastyczność mózgu w różnym wieku (zarówno w normalnej populacji, jak i wśród chorych z różnymi zaburzeniami).
      Kraus przestrzega, że wyniki najnowszych badań nie wskazują, że muzycy mają przewagę nad niemuzykami w każdym zakresie i ich neurony szybciej reagują na każdy dźwięk. Studium zademonstrowało, że doświadczenie muzyczne wybiórczo oddziałuje na czasowanie elementów dźwięku ważnych dla odróżnienia jednej spółgłoski od drugiej.
      Podczas oglądania filmu z napisami u 87 prawidłowo słyszących dorosłych, dla których angielski był językiem ojczystym, mierzono automatyczne reakcje nerwowe. Muzycy zaczęli się uczyć gry przed ukończeniem 9 lat i byli zaangażowani muzycznie przez całe życie. Niemuzycy kształcili się muzycznie 3 lata bądź mniej.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...