Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Badacze z Carnegie Mellon University wprowadzali do guzów kropki kwantowe i dzięki temu mogli obserwować w bliskiej podczerwieni tzw. węzły wartownicze (ang. sentinel lymph node, SLN), czyli węzły chłonne znajdujące się najbliżej ogniska nowotworowego.

Zespół dr. Byrona Ballou wykorzystał pokryte polimerami, rozpuszczalne w wodzie kropki kwantowe (Bioconjugate Chemistry). Mapowanie węzłów jest o tyle ważne, że w wielu typach nowotworów przerzuty pojawiają się najpierw właśnie w węzłach wartowniczych. Po wstrzyknięciu kropek bezpośrednio do tkanki guza śledzono ich przemieszczanie się za pomocą analizy fluorescencyjnej w bliskiej podczerwieni, nie uszkadzając przy tym powłok skórnych.

Okazało się, że kropki kwantowe niemal natychmiast opuszczały guz wraz z chłonką. Szybko uwidaczniała się sieć połączeń limfatycznych, poprzez którą rozprzestrzeniają się komórki nowotworowe. Mimo zastosowania wielu odmian kropek kwantowych, naukowcy nie zaobserwowali różnic we fluorescencji węzłów chłonnych.

Kropki wstrzykiwano różnym zwierzętom, w tym myszom. Obserwowano je od momentu iniekcji przez 2 lata, nie zauważono jednak żadnych toksycznych efektów, choć nawet po tak długim czasie cząsteczki dało się w organizmie wytropić.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Świat ma coraz większy problem z plastikowymi odpadami. By mu zaradzić chemicy z Cornell University opracowali nowy polimer o właściwościach wymaganych w rybołówstwie, który ulega degradacji pod wpływem promieniowania ultrafioletowego, dowiadujemy się z artykułu opublikowanego na łamach Journal of the American Chemical Society.
      Stworzyliśmy plastik o właściwościach mechanicznych wymaganych w komercyjnym rybołówstwie. Jeśli  wyposażenie to zostanie zgubione w wodzie, ulegnie degradacji w realistycznej skali czasowej. Taki materiał może zmniejszyć akumulowanie się plastiku w środowisku, mówi główny badacz, Bryce Lipinski, doktorant z laboratorium profesora Geoffa Coatesa. Uczony przypomina, że zgubione wyposażenie kutrów rybackich stanowi aż połowę plastikowych odpadów pływających w oceanach. Sieci i liny rybackie są wykonane z trzech głównych rodzajów polimerów: izotaktycznego polipropylenu, polietylenu o wysokiej gęstości oraz nylonu-6,6. Żaden z nich nie ulega łatwej degradacji.
      Profesor Coates od 15 lat pracuje na nowym rodzajem plastiku o nazwie izotaktyczny tlenek polipropylenu (iPPO). Podwaliny pod stworzenie tego materiału położono już w 1949 roku, jednak zanim nie zajął się nim Coates niewiele było wiadomo o jego wytrzymałości i właściwościach dotyczących fotodegradacji.
      Lipinski zauważył, że iPPO jest zwykle stabilny, jednak ulega degradacji pod wpływem promieniowania ultrafioletowego. W laboratorium widać skutki tej degradacji, jednak są one niewidoczne gołym okiem. Tempo rozpadu tworzywa zależy od intensywności promieniowania. W warunkach laboratoryjnych łańcuch polimerowy uległ skróceniu o 25% po 30-dniowej ekspozycji na UV. Ostatecznym celem naukowców jest stworzenie plastiku, który będzie rozpadał się całkowicie i nie pozostawi w środowisku żadnych śladów. Lipinski mówi, że w literaturze fachowej można znaleźć informacje o biodegradacji krótkich łańcuchów iPPO. Uczony ma jednak zamiar udowodnić, że całkowitemu rozpadowi będą ulegały tak duże przedmioty jak sieci rybackie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Żelazne nanodruciki z lekami można doprowadzać do zmian nowotworowych za pomocą zewnętrznego pola magnetycznego. Później wystarczy aktywować 3-elementowy proces zabijania zmienionych chorobowo komórek.
      Nad rozwiązaniem pracowali m.in. naukowcy z Uniwersytetu Nauki i Techniki Króla Abdullaha (KAUST).
      Żelazo jest pierwiastkiem niezbędnym do życia (zarówno dla ludzi, jak i dla zwierząt). Ten pierwiastek śladowy wchodzi w skład białek i enzymów, np. hemoglobiny czy enzymów cyklu Krebsa. Jak zauważa Jürgen Kosel z KAUST, dzięki cechom magnetycznym nanocząstki tlenku żelaza znalazły zastosowanie jako środki kontrastowe w obrazowaniu techniką rezonansu magnetycznego (MRI).
      Materiały zawierające żelazo są biokompatybilne. Za pomocą nieszkodliwego pola magnetycznego możemy je transportować i koncentrować w wybranym obszarze, obracać lub wprawiać w drgania, tak postąpiliśmy w naszym studium, a także wykrywać za pomocą MRI - opowiada Aldo Martínez-Banderas.
      Przykładając pole magnetyczne o niskiej mocy, zespół wprawiał nanodruciki w drgania; zjawisko to prowadziło do powstawania otworów w błonie komórkowej.
      Druciki, w których rdzeń z żelaza jest powleczony tlenkiem żelaza, świetnie absorbują podczerwień i się podgrzewają. Ponieważ światło o tej długości penetruje w głąb tkanek, nanodruciki można podgrzewać laserami skierowanymi w miejsce guza. Wykazano, że wydajność konwersji fototermicznej przekraczała 80%, co przekładało się na dużą wewnątrzkomórkową dawkę ciepła.
      Za pomocą wrażliwych na pH łączników do nanodrucików rdzeń/otoczka "mocowano" cytostatyk doksorubicynę. Jako że środowisko guza jest zazwyczaj bardziej kwaśne niż zdrowa tkanka, łącznik wybiórczo rozkłada się w lub w pobliżu komórek nowotworowych, uwalniając lek dokładnie tam, gdzie jest potrzebny. Terapia łączona skutkowała niemal całkowitą ablacją komórek nowotworowych i była skuteczniejsza niż pojedyncze terapie - podkreśla Martínez-Banderas.
      [...] Możliwości żelaznych nanomateriałów sprawiają, że wydają się one bardzo obiecujące, jeśli chodzi o tworzenie biomedycznych nanorobotów - podsumowuje Kosel.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Testy tysięcy nieonkologicznych leków (substancji leczniczych), które przeprowadzono na 578 liniach ludzkich komórek nowotworowych, doprowadziły do nieoczekiwanego odkrycia: niemal 50 z nich miało właściwości przeciwnowotworowe. Były wśród nich leki do terapii cukrzycy, uzależnienia od alkoholu, a nawet zapalenia stawów u psów.
      Zaskakujące odkrycie zespołu z MIT-u i Uniwersytetu Harvarda (Broad Institute) oraz Dana-Farber Cancer Institute pomogło też zidentyfikować nowe mechanizmy działania i cele dla leków.
      Myśleliśmy, że będziemy mieli szczęście, jeśli znajdziemy choć jedną substancję o właściwościach przeciwnowotworowych, a ku swemu zaskoczeniu wykryliśmy ich tak wiele - podkreśla prof. Todd Golub.
      Wyniki badań ukazały się w piśmie Nature Cancer. To największe jak dotąd studium z wykorzystaniem Drug Repurposing Hub; na zbiór ten składa się ponad 6000 leków i substancji leczniczych, które albo zostały zatwierdzone przez FDA, albo okazały się bezpieczne w czasie testów klinicznych (w okresie prowadzenia badań Hub składał się z 4518 leków).
      Naukowcy testowali wszystkie substancje z Drug Repurposing Hub na 578 liniach ludzkich komórek nowotworowych z Cancer Cell Line Encyclopedia (CCLE). Naukowcy uciekli się do genetycznego metkowania (DNA barcoding) metodą PRISM; opracowano ją w laboratorium Goluba. Dzięki temu można było badać kilka linii naraz, przyspieszając eksperyment.
      Każdą większą pulę metkowanych komórek wystawiano na oddziaływanie pojedynczej substancji z Drug Repurposing Hub i mierzono przeżywalność komórek nowotworowych.
      W ten sposób znaleziono niemal 50 nieprzeciwnowotworowych leków, w tym takich, które pierwotnie opracowano do obniżania poziomu cholesterolu lub zmniejszania stanu zapalnego, zabijających pewne komórki nowotworowe (nie szkodziły one przy tym innym komórkom).
      Niektóre związki uśmiercały komórki nowotworowe w nieoczekiwany sposób. Większość leków przeciwnowotworowych działa, blokując białka, my zaś odkryliśmy substancje, które działają za pośrednictwem innych mechanizmów - opowiada Steven Corsello. Część nie hamuje białek, ale je aktywuje albo stabilizuje interakcje białko-białko. Zauważono np., że prawie 12 nieonkologicznych leków zabija komórki nowotworowe, w których zachodzi ekspresja białka PDE3A, stabilizując interakcję między PDE3A a innym białkiem SLFN12.
      Większość nieonkologicznych leków uśmiercających komórki nowotworowe działała za pośrednictwem nieznanych celów molekularnych. Przeciwzapalna tepoksalina, którą opracowano z myślą o ludziach, ale później dopuszczono do leczenia zapalenia stawów u psów, zabijała komórki nowotworowe, "uderzając" w nieznany cel w komórkach z nadmierną ekspresją białka MDR1 (glikoproteina P jest markerem oporności wielolekowej).
      Ostatecznie naukowcy potrafili przewidzieć, czy dany lek może zabić jakąś linię komórkową, przyglądając się jej cechom genetycznym, takim jak mutacje czy poziom metylacji, zapisanym w bazie CCLE. To zaś oznacza, że pewnego dnia cechy te mogą zostać wykorzystane jako biomarkery do identyfikacji pacjentów, którzy z najwyższym prawdopodobieństwem skorzystają z jakichś leków. Zauważano np., że stosowany w leczeniu alkoholizmu disulfiram zabijał linie komórkowe z mutacjami powodującymi ubytek metalotionein (MT). Związki zawierające wanad, które pierwotnie opracowano do terapii cukrzycy, działały z kolei na komórki nowotworowe z ekspresją transportera siarczanu SLC26A2.
      Zespół chciałby przetestować związki z Drug Repurposing Hub na większej liczbie linii komórkowych i rozbudować sam Hub. Akademicy podkreślają, że zdobyte dotąd dane będą dalej analizowane.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Śląskiego opracowali metodę syntezy, która umożliwia produkcję czystego chemicznie polikaprolaktonu (PCL-u). Jest to polimer ulegający naturalnemu rozkładowi w okresie około dwóch lat. Wykazuje on zgodność tkankową, co oznacza, że może być stosowany w przemyśle farmaceutycznym i medycznym. Dodatkowo polimer ten ma dobre właściwości przetwórcze, jest rozpuszczalny w wielu rozpuszczalnikach organicznych oraz może tworzyć mieszalne blendy polimerowe. Powyższe właściwości sprawiają że ma szerokie zastosowania wielkotonażowe, co przekłada się na zainteresowanie wielu ośrodków naukowych i przemysłowych.
      PCL może być stosowany jako: nośnik w układach kontrolowanego uwalniania leków, podłoże do hodowli tkanek w inżynierii tkankowej bądź materiał wypełniający. Dzięki temu, że naturalnie rozkłada się w organizmie ludzkim, może być również wykorzystywany do produkcji wchłanialnych nici chirurgicznych czy implantów z pamięcią kształtu, takich jak klamry do łączenia złamań kości czy specjalne pręty stosowane do leczenia schorzeń kręgosłupa.
      Zważywszy na interesujące właściwości, polimer ten znajduje także zastosowanie w przemyśle – jako dodatek do opakowań i folii biodegradowalnych, a w połączeniu ze skrobią może być używany do wyrobu tworzywa, z którego otrzymywane są jednorazowe talerzyki czy kubki.
      Ze względu na wielkotonażową produkcję PCL-u i jego szerokie zastosowanie w medycynie, ważne jest usprawnianie procesu jego produkcji, najczęściej poprzez modyfikacje sposobu jego otrzymywania. Docelowo proces ten powinien być kontrolowany w taki sposób, aby producenci otrzymywali PCL o określonych, pożądanych właściwościach przy obniżonych wymaganiach technologicznych.
      Jest to trudne zadanie przede wszystkim ze względu na potencjalne zastosowanie PCL-u w medycynie, gdzie wyprodukowane z niego narzędzia czy obiekty mają kontakt z tkanką ludzką, co wymusza ponadprzeciętną czystość wymaganą przez producentów. Ponadto produkcja tego polimeru powinna być przyjazna dla środowiska naturalnego.
      Interesujące rozwiązanie zaproponowali naukowcy z Uniwersytetu Śląskiego. Zmienili warunki, w których prowadzony jest proces polimeryzacji ε-kaprolaktonu (ε-CL), umożliwiając produkcję polimerów o niespotykanej czystości . Alternatywą okazało się zastosowanie wody jako inicjatora reakcji chemicznej oraz wysokiego ciśnienia jako jej katalizatora. Obecność wody pozwala kontrolować przebieg reakcji, natomiast przeprowadzenie jej w warunkach wysokiego ciśnienia umożliwia otrzymanie produktu o dużej czystości, oznaczającej m.in. brak zawartości jonów metali i zanieczyszczeń organicznych oraz nieorganicznych. Tak otrzymany PCL może być stosowany nie tylko w przemyśle, ale i w medycynie, m.in. do produkcji nici chirurgicznych, jako nośnik leków czy szkielet w inżynierii tkankowej.
      Ponadto zaproponowany sposób ciśnieniowej polimeryzacji ε-kaprolaktonu pozwala na uproszczenie składu mieszaniny reakcyjnej, co skutkuje obniżeniem kosztów produkcji. Opisane rozwiązanie zostało objęte ochroną patentową.
      Autorami wynalazku są pracownicy Wydziału Nauk Ścisłych i Technicznych: mgr inż. Andrzej Dzienia, dr inż. Paulina Maksym, dr hab. Magdalena Tarnacka, dr hab. Kamil Kamiński, prof. UŚ oraz prof. zw. dr hab. Marian Paluch.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Politechniki Federalnej w Lozannie odkryli, że komórki nowotworowe wykorzystują egzosomy, by komunikować się ze sobą za pośrednictwem krwiobiegu.
      To było duże zaskoczenie. Nie spodziewaliśmy się znaleźć w egzosomach takiej ilości markerów komórek czerniaka - podkreśla prof. Hubert Girault.
      Szwajcarski zespół dokonał odkrycia niemal przypadkowo. Ustalenia, które opisano na łamach periodyku Chem, dają cenny wgląd w to, jak komórki nowotworowe komunikują się ze sobą i wysyłają sobie informacje w organizmie.
      Akademicy wyjaśniają, że wszystkie komórki uwalniają egzosomy, które są mikroskopijnymi sferami o średnicy poniżej 100 nanometrów. Przenoszą one "informacje" w postaci kwasów nukleinowych, białek i markerów.
      Pracując nad wyizolowaniem egzosomów komórek czerniaka, Yingdi Zhu posłużyła się hodowlą komórkową i spektrometrią masową MALDI-TOF MS. Była w stanie zidentyfikować w egzosomach markery komórek nowotworowych dla każdego etapu wzrostu czerniaka.
      O ile zdrowe komórki produkują zazwyczaj mało egzosomów, o tyle komórki nowotworowe wytwarzają ich o wiele więcej. Dotąd sądzono jednak, że są one tak "rozcieńczone" we krwi, że trudno je będzie wykryć. Analizując ezgosomy pacjentów z czerniakiem, zaskoczeni naukowcy odkryli duże ilości markerów komórek nowotworowych.
      Prof. Girault uważa, że duża ilość markerów w egzosomach rodzi liczne pytania dot. sygnalizacji między komórkami nowotworowymi, zwłaszcza że wcześniej nie sądzono, że mogą się one komunikować na większe odległości.
      Ta komunikacja przygotowuje tkanki na metazję (przerzutowanie) i w ten sposób ułatwia rozprzestrzenianie komórek. Markery dają też pojęcie, jak bardzo guz jest rozwinięty. Naukowcy sugerują więc, że zamiast wykonywać biopsję, w przyszłości można by przeprowadzać test z krwi, który zapewniałby dane nt. obecności guza i stopnia jego zaawansowania, a nawet pozwalałby przewidywać reakcje na terapię.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...