Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Grafenowi można nadać właściwości piezoelektryczne

Recommended Posts

Grafen ma wiele niezwykłych właściwości, jednak nie jest materiałem piezoelektrycznym.  Piezoelektryczność to właściwość niektórych materiałów, polegająca na tym, że przy zginaniu, ściskaniu i skręcaniu materiały te produkują ładunki elektryczne. Występuje też zależność odwrotna - pole elektryczne wywołuje odkształcenie materiału piezoelektrycznego, dając nad nim duża kontrolę.

W ACS Nano ukazał się artykuł, w którym dwóch inżynierów ze Stanford University opisuje, w jaki sposób nadali grafenowi właściwości piezoelektryczne.

Fizyczne deformacje, jakie możemy tworzyć, są wprost proporcjonalne do przyłożonego pola elektrycznego, co daje nam niedostępną wcześniej możliwość kontrolowania elektroniki w nanoskali - stwierdził Evan Reed, szef Materials Computation and Theory Group i główny autor badań. To pozwala mieć nadzieję, na zrealizowanie koncepcji ‚straintroniki’, zwanej tak ze względu na sposób, w jaki pole elektryczne w sposób przewidywalny zmienia kształt sieci krystalicznej węgla - dodał uczony.

Mitchell Ong, autor artykułu w ACS Nano, uważa, że „piezoelektryczny grafen może może zapewnić niedostępny dotychczas stopień elektrycznej, mechanicznej i optycznej kontorli nad różnymi urządzeniami, od ekranów dotykowych po nanotranzystory“.

Za pomocą symulacji przeprowadzanych na superkomputerach, inżynierowie sprawdzali skutki domieszkowania grafenu po jednej lub obu stronach sieci krystalicznej. Modelowano domieszkowanie litem, wodorem, potasem i fluorem oraz ich kombinacjami. Wyniki zaskoczyły naukowców. Sądziliśmy, że pojawi się efekt piezoelektryczny, ale będzie on słaby. Tymczasem jest on podobny do występującego w tradycyjnych materiałach - mówi Reed.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Nowatorska superszybka technika obrazowania atomów ujawniła istnienie nieznanego dotychczas stanu, którego wykorzystanie może pomóc z opracowaniu szybszych energooszczędnych komputerów. Technika ta pozwoli też zbadać, gdzie leżą fizyczne granice przełączania pomiędzy różnymi stanami.
      Naukowcy przyznają, że nie wiedzą zbyt wiele o stanach przejściowych, w jakich znajdują się materiały elektroniczne podczas operacji przełączania. Nasza technika pozwala na wizualizowanie tego procesu i znalezienie odpowiedzi na niezwykle ważne pytanie – jakie są granice przełączania jeśli chodzi o prędkość i zużycie energii, stwierdził główny autor badań, Aditya Sood ze SLAC National Accelerator Laboratory.
      Wraz z kolegami ze SLAC, Hewlett Packard Labs, Pennsylvania State University oraz Purdue University badał on urządzenia wykonane z ditlenku wanadu (VO2). Wiadomo bowiem, że materiał ten przechodzi pomiędzy stanem izolatora z przewodnika w temperaturze zbliżonej do temperatury pokojowej.
      VO2 poddawano okresowemu działaniu impulsów elektrycznych, które przełączały go pomiędzy różnymi stanami. Impulsy te zsynchronizowano z wysoko energetycznymi impulsami elektronów generowanymi przez kamerę Ultrafast Electron Diffracion (UED). Za każdym razem, gdy impuls elektryczny wzbudzał naszą próbkę, towarzyszył mu impuls elektronów, którego opóźnienie mogliśmy regulować. Powtarzając ten proces wielokrotnie i zmieniając za każdym razem opóźnienie, uzyskaliśmy poklatkowy obraz atomów poruszających się w reakcji na impuls elektryczny, wyjaśnia Sood.
      To pierwszy raz, gdy użyto UED, urządzenie wykrywające niewielkie ruchy atomów poprzez rozpraszanie na próbce wysokoenergetycznego strumienia elektronów, do badania pracy urządzenia elektrycznego. Wpadliśmy na ten pomysł już trzy lata temu, jednak zdaliśmy sobie sprawę, że istniejące urządzenia nie pracują wystarczająco szybko. Musieliśmy więc skonstruować własne, dodaje profesor Aaron Lindenberg.
      Dzięki swojemu urządzeniu badacze odkryli, że pod wpływem szybkich impulsów elektrycznych VO2 wchodzi w stan, który normalnie nie istnieje. Istnieje on zaledwie przez kilka mikrosekund, gdy materiał zmienia się z izolatora w przewodnik. Okazało się, że struktura atomowa tej fazy jest taka sama, jak fazy izolatora, jednak materiał jest już wówczas przewodnikiem. To niezwykle ważne, gdyż normalnie dwa stany – izolatora i przewodnika – różnią się między sobą ułożeniem atomów, a do zmiany tego ułożenia konieczne jest wydatkowanie energii. Gdy jednak zmiana ma miejsce poprzez stan przejściowy, przełączanie w przewodnik nie wymaga zmiany struktury atomowej.
      Autorzy badań pracują teraz nad wydłużeniem istnienia stanu przejściowego. Nie wykluczają, że możliwe byłoby stworzenie urządzenia, w którym zmiana pomiędzy izolatorem z przewodnikiem będzie się odbywała bez ruchu atomów, dzięki czemu takie urządzenie pracowałoby szybciej i zużywało mniej energii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Pod koniec obecnej dekady popularność ciężarówek napędzanych wodorem osiągnie punkt zwrotny, uważają szefowie dwóch największych na świecie producentów samochodów ciężarowych. W ciągu najbliższych lat na rynek ma trafiać coraz więcej pojazdów napędzanych wodorem, a pod koniec dekady ich popularność zacznie wyraźnie rosnąć.
      Martin Daum, szef Daimler Truck powiedział, że co prawda jeszcze w ciągu najbliższych 3–4 lat sprzedaż samochodów ciężarowych będzie niemal całkowicie zdominowana przez pojazdy napędzane silnikami Diesla, to w latach 2027–2030 na rynek coraz śmielej będą wchodziły pojazdy napędzane wodorem, a ich sprzedaż będzie szybko rosła. Z kolei Martin Lundstedt, szef Volvo Group, stwierdził, że ciężarówki z alternatywnym napędem będą szybko zyskiwały na popularności po tym, jak w roku 2025 rozpocznie się produkcja ogniw paliwowych. Oba koncerny zawiązały ostatnio joint venture, którego celem jest rozwój napędu wodorowego.
      Volvo zapowiada, że już w roku 2030 połowa ciężarówek tej marki sprzedawana w Europie wędzie napędzana silnikiem elektrycznym lub wodorowymi ogniwami paliwowymi. Natomiast od roku 2040 obie firmy chcą sprzedawać wyłącznie pojazdy z silnikami innymi niż spalinowe.
      Wspomniane powyżej joint venture o nazwie Cellcentric rozpocznie w 2025 roku produkcję wodorowych ogniw paliwowych. Wodór jest postrzegany jako paliwo najbliższej przyszłości dla wielkich ciężarówek pokonujących duże dystanse w Europie, USA i innych częściach świata. Martin Daum, który przewiduje, że w przyszłości połowa samochodów ciężarowych będzie napędzana silnikami elektrycznymi, a połowa wodorowymi, mówi, że jeśli musisz wjechać 40-tonową ciężarówką na wzgórze, to potrzebujesz olbrzymich ilości energii, a zapewnić ją może albo silnik diesla, albo wodór. Ogniwa paliwowe i wodór będą odgrywały olbrzymią rolę, dodaje Lundstedt.
      Obaj menedżerowie podkreślają, że bardzo ważną rolę muszą odegrać rządy poszczególnych państw. Powinny one doprowadzić do powstania odpowiedniej infrastruktury umożliwiającej tankowanie wodorem. Ich zdaniem do roku 2025 w Europie powinno istnieć około 300 punktów tankowania, a do roku 2030 – 1000.
      Obaj menedżerowie zauważają, że przez co najmniej kolejnych 15 lat ciężarówki napędzane akumulatorami i ogniwami wodorowymi będą droższe, niż samochody napędzane silnikami diesla. Daum zauważa, że przeciętny właściciel samochodu ciężarowego wydaje w ciągu jego użytkowania 3–4 razy więcej pieniędzy na paliwo, niż na zakup pojazdu. Zachętą do zakupu ciężarówek z alternatywnym typem napędu powinny być, jego zdaniem, nie dopłaty do samych samochodów, ale odpowiednie opłaty za emisję CO2 nakładane na paliwa kopalne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wzrost popularności samochodów elektrycznych wiąże się ze zwiększonym zapotrzebowaniem na lit, wykorzystywany do produkcji akumulatorów. Co prawda jest on dość szeroko rozpowszechniony w skorupie ziemskiej, jednak tylko w niewielu miejscach występuje w takiej ilości i stężeniach, że opłaca się go pozyskiwać. Naukowcy z Uniwersytetu Stanforda dokonali właśnie znacznego kroku na drodze do pozyskiwania litu z niemal niewyczerpanego źródła – wody morskiej.
      Obecnie każdego roku przemysł wykorzystuje ponad 160 000 ton litu. W następnej dekadzie zapotrzebowanie na ten pierwiastek będzie 10-krotnie wyższe niż obecnie. Tymczasem w niewielu krajach na świecie opłaca się go pozyskiwać. Największym światowym rezerwuarem litu jest boliwijski Salar de Uyuni, gdzie występuje ponad 5 milionów ton litu. Prawdopodobnie największe zasoby tego pierwiastka posiadają Chile (7,5 miliona ton), Chiny (3,5 miliona ton) oraz Australia (1,5 miliona ton).
      Kolosalne zasoby litu – szacowane na 180 miliardów ton – znajdują się w wodzie morskiej. Występują tam jednak w niezwykle małym stężeniu wynoszącym 0,2 części na milion. Dla porównania, w Salar de Uyuni koncentracja litu sięga nawet 280 ppm, jest więc 1400-krotnie większa niż w wodzie morskiej.
      Dotychczas naukowcy opracowali wiele filtrów i membran, za pomocą których próbują pozyskiwać lit z wody morskiej. Jednak techniki te bazują na odparowywaniu wody w celu zwiększenia koncentracji litu, a to z kolei wymaga czasu i olbrzymich powierzchni.
      Z kolei Jang Wook Choi, inżynier z Seulskiego Uniwersytetu Narodowego próbował wraz z zespołem pozyskiwać lit za pomocą akumulatorów litowych. Ich pomysł polegał na zanurzeniu elektrod w wodzie, co prowadziło do przyciągnięcia jonów litu do elektrody. Problem jednak w tym, że przyciągany był również sód, którego w wodzie morskiej jest 100 000 razy więcej niż litu. To zaś prowadziło do całkowitego zagłuszenia litu przez sód.
      Teraz Yi Cui i jego zespól z Uniwersytetu Stanforda postanowili spowodować, by materiał wykorzystany do elektrod bardziej selektywnie przyciągał pierwiastki. Najpierw pokryli elektrodę cienką warstwą dwutenku tytanu. Jako, że jony litu są mniejsze od jonów sodu, łatwiej im przedostać się przez taką barierę. Ponadto naukowcy zmienili sposób podawania napięcia do elektrody. Zamiast podawać do elektrody stałe napięcie ujemne, jak to robili inni, zmieniali je. Najpierw podawali napięcie ujemne, później na chwilę wyłączali elektrodę, następnie podawali napięcie dodatnie, wyłączali i powtarzali cały cykl.
      Jak wyjaśnia Cui, takie manipulacje napięciem powodowały, że jony sodu i litu poruszały się do elektrody, zatrzymywały się i poruszały się od elektrody. Jednak, jako że materiał elektrody miał nieco większe powinowactwo do litu, jony litu były tymi, które pierwsze do elektrody trafiały i ostatnie ją opuszczały. Po 10 takich cyklach, które w sumie trwały kilka minut, stosunek jonów litu do sodu wynosił 1:1. To znaczący postęp, przyznaje Choi.
      Nowa technologia wciąż prawdopodobnie nie jest konkurencyjna ekonomicznie w porównaniu z obecnie stosowanymi metodami. Jednak Chong Liu z University of Chicago, która w przeszłości współpracowała z Cui, zapowiada, że spróbuje wykorzystać inny typ elektrod i być może uda się osiągnąć lepsze wyniki. Z kolei Choi dodaje, że nowa technologia może przydać się przy odzyskiwaniu litu ze zużytych akumulatorów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chińscy naukowcy uzyskali wysokiej jakości piankę grafenową z gazów odpadowych pochodzących z pirolizy odpadów organicznych. Chińczycy twierdzą, że ich metoda jest tańsza i bardziej przyjazna dla środowiska niż dotychczasowe sposoby wytwarzania pianki.
      Jak zapewnia Hong Jiang z Chińskiego Uniwersytetu Nauki i Technologi w Hefei, wyprodukowany materiał jest strukturalnie podobny do pianek grafenowych uzyskiwanych standardowymi metodami. Wykazuje on też podobne właściwości elektryczne i oraz równie dobrze absorbuje ciecze takie jak benzen czy parafina.
      Pianki grafenowe to trójwymiarowe wersje płaskich dwuwymiarowych płacht grafenu. Są one wytrzymałem, charakteryzują się dużym przewodnictwem elektrycznym, świetnie przewodzą ciepło. Mają wiele potencjalnych zastosowań. Mogą być używane do przechowywania energii, oczyszczania środowiska, przydadzą się chemikom, sprawdzą w roli bioczujników.
      Zwykle produkuje się je metodą osadzania z fazy gazowej. W metodzie tej gaz zawierający węgiel – np. metan – jest wprowadzany do podgrzanego metalowego substratu, zwykle jest nim pianka aluminiowa lub miedziana. Gdy gaz wchodzi w kontakt z substratem, dochodzi do osadzania się atomów węgla. Po zakończeniu reakcji metal jest wytrawiany i pozostaje grafenowa pianka.
      Osadzanie z fazy gazowej to metoda kosztowna, która wymaga użycia dużych ilości gazu. Dlatego też Jiang i jego zespół postanowili wykorzystać bogate w węgiel gazy z biorafinerii. W tego typu zakładach odpady organiczne są podgrzewane bez dostępu tlenu do temperatury 500 stopni Celsjusza lub wyższej. W procesie pirolizy powstaje biopaliwo.
      Chińczycy wykorzystali dwa składniki roślinne – sproszkowaną celulozę i sproszkowaną ligninę – które poddano pirolizie w temperaturze 800 stopni Celsjusza. Powstałe gazy zostały przefiltrowane, dzięki czemu oddzielono gazy o dużych molekułach. Następnie gazy o drobnych molekułach skierowano do komory osadzania z fazy gazowej, w której znajdowała się pianka aluminiowa. Uzyskany produkt przebadano za pomocą spektroskopii ramanowskiej i skaningowej mikroskopii elektronowej. Są dobrej jakości, nie widać w nich oczywistych defektów, mówi Jiang.
      Oczywiście sproszkowana celuloza i lignina są dalekie od standardowych odpadów organicznych. Dlatego też w kolejny etapie badań naukowcy wykorzystali słomę i trociny. Wyprodukowana z nich pianka grafenowa była nieco gorszej jakości niż ta z celulozy i ligniny. Jednak oba rodzaje miały jednorodną strukturę i świetne właściwości w zastosowaniach środowiskowych oraz do przechowywania energii. Zdaniem Jianga najlepszymi odpadami do produkcji pianek będą te zawierające dużo ligniny, celulozy i hemicelulozy. Jednak użyć można też innych materiałów. Oczywiście różne dodatki znajdujące się w takich odpadach wpłyną na skład pianki. Na przykład jeśli w odpadach będzie znajdowało się dużo azotu i siarki, to pierwiastki te mogą trafić też do pianki, wyjaśnia uczony.
      Edward Randviir z Manchester Metropolitan University, który nie brał udziału w opisywanych badaniach, mówi, że zwykle pianki grafenowe produkuje się za paliw kopalnych lub z czystego grafitu. Warto poszukać alternatyw dla tych materiałów, a Jiang i jego ludzie wykazali, że produkcja grafenu z biomasy jest możliwa. Jest też bardziej przyjazna środowisku i tańsza niż inne metody. Ten drugi element może jednak ulec zmianie. Grafen jest obecnie drogi, gdyż nie istnieją metody produkowania go na masową skalę. Jeśli się to zmieni, cena grafenu powinna spaść.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowców odkrył, że atomy wodoru w wodorkach metalu są dużo gęściej upakowane niż uważano do tej pory. Właściwość ta może prowadzić do pojawienia się nadprzewodnictwa w temperaturach i ciśnieniach zbliżonych do panujących w warunkach pokojowych. Tego rodzaju materiał nadprzewodzący, służący do przesyłania energii elektrycznej bez strat wywołanych rezystancją, mógłby zrewolucjonizować efektywność energetyczną w szerokim zakresie zastosowań.
      W należącym do Departamentu Energii Stanów Zjednoczonych Narodowym Laboratorium Oak Ridge (ORNL) naukowcy przeprowadzili eksperymenty rozpraszania neutronów na wodorku cyrkonowo-wanadowym pod ciśnieniem atmosferycznym w zakresie temperatur sięgających od –268 stopni Celsjusza (5 K) do –23 stopni Celsjusza (250 K) – czyli znacznie powyżej temperatury, w której spodziewane jest wystąpienie nadprzewodnictwa przy takim ciśnieniu. Wyniki pomiarów w żaden sposób nie zgadzały się z istniejącymi modelami. Prof. Zbigniew Łodziana z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie, jeden z członków międzynarodowego zespołu badaczy, zaproponował nowy model tego wodorku. Model ten, poddany obliczeniom na jednym z najpotężniejszych superkomputerów na świecie, pozwolił w prosty sposób wyjaśnić obserwacje eksperymentalne. Okazało się, że odległości pomiędzy atomami wodoru w badanym materiale wynoszą 1,6 angstrema, podczas gdy dotychczas ugruntowane przewidywania dla tych związków wyznaczały tę odległość na poziomie co najmniej 2,1 angstrema.
      Odkrycia międzynarodowego zespołu badaczy ze szwajcarskiego Laboratorium Badania Materiałów i Technologii EMPA, Uniwersytetu w Zurychu, Uniwersytetu Illinois w Chicago ORNL oraz Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie opublikowane zostały w prestiżowym czasopiśmie Proceedings of National Academy of Sciences.
      Uzyskana struktura atomowa posiada niezwykle obiecujące właściwości, ponieważ wodór znajdujący się w metalach wpływa na ich właściwości elektronowe. Inne materiały o podobnym upakowaniu atomów wodoru przechodzą w stan nadprzewodnictwa, ale tylko przy bardzo wysokich ciśnieniach.
      Na przykład niedawno odkryty dekawodorek lantanu osiąga stan nadprzewodnictwa w temperaturze około –13 stopni Celsjusza, tyle że pod ciśnieniem 150 tysięcy MPa, czyli prawie półtora miliona razy wyższym niż ciśnienie atmosferyczne! Tak wysokie ciśnienie potrzebne jest, by zbliżyć do siebie atomy wodoru na odległość mniejszą niż 2 angstremy. Nam udało się pokazać, że wodór można upakować w taki sposób również pod ciśnieniem atmosferycznym. Co ciekawe – od ponad 40 lat panowało przekonanie, iż nie jest to możliwe, stąd badano materiały pod wysokimi ciśnieniami. Znalezienie substancji, która jest nadprzewodnikiem w temperaturze pokojowej i pod ciśnieniem atmosferycznym, najprawdopodobniej pozwoli inżynierom wykorzystać go do projektowania powszechnie stosowanych systemów i urządzeń elektrycznych, jak na przykład tomografów rezonansu magnetycznego. Mamy nadzieję, że tani i stabilny stop w rodzaju wodorku cyrkonowo-wanadowego można będzie łatwo zmodyfikować w taki sposób, aby uzyskać nadprzewodzący materiał – wyjaśnia prof. Zbigniew Łodziana z IFJ PAN.
      Badacze przeanalizowali oddziaływania atomów wodoru w dobrze poznanym wodorku metalu za pomocą wysokiej rozdzielczości wibracyjnej spektroskopii nieelastycznego rozpraszania neutronów wiązki VISION, pochodzącej ze spalacyjnego źródła neutronów laboratorium Oak Ridge w Stanach Zjednoczonych. Uzyskany sygnał widmowy, w tym znaczący wzrost intensywności przy energii około 50 milielektronowoltów, nie zgadzał się z przewidywaniami poczynionymi w ramach istniejących modeli teoretycznych.
      Przełom w zrozumieniu obserwacji nastąpił po wykonaniu obliczeń w Oak Ridge. Zaproponowany przez prof. Łodzianę model posłużył opracowaniu strategii analizy danych. Obliczenia wykonano na superkomputerze Titan, jednym z najszybszych tego typu urządzeń na świecie. Komputer ten zbudowany jest w oparciu o platformę Cray XK7 i działa z prędkością dochodzącą do 27 petaflopów (czyli 27 biliardów operacji zmiennoprzecinkowych na sekundę). Wykonanie takich obliczeń na komputerze domowym trwałoby około dwudziestu lat, a na najszybszym polskim superkomputerze Prometheus w ACK Cyfronet jakieś 3–5 miesięcy. Na maszynie Titan wyniki obliczeń otrzymaliśmy w niespełna tydzień – mówi prof. Łodziana.
      Przeprowadzone symulacje komputerowe, wraz z dodatkowymi eksperymentami wykluczającymi alternatywne wyjaśnienia, wykazały jednoznacznie, że nieoczekiwana sygnatura widmowa występuje tylko wtedy, gdy odległości między atomami wodoru są mniejsze niż 2 angstremy. Takiego zjawiska nigdy wcześniej nie zaobserwowano w wodorkach metalu dla ciśnień i temperatur charakterystycznych dla warunków pokojowych. Odkrycia zespołu stanowią więc pierwszy znany wyjątek od kryterium Switendicka w stopie bimetalicznym – czyli zasady obowiązującej dla stabilnych wodorków w warunkach standardowych, która mówi o tym, że odstęp między atomami wodoru nie może być mniejszy niż 2,1 angstrema.
      W kolejnych doświadczeniach naukowcy planują wzbogacić wodorek cyrkonowo-wanadowy większą ilością wodoru pod różnymi ciśnieniami, aby ocenić potencjalne nadprzewodnictwo badanego materiału.
      Czy zatem znajdujemy się u progu technologicznej rewolucji polegającej na znalezieniu materiału wykazującego właściwości nadprzewodzące w temperaturze pokojowej? Tego nie wiem, ale z pewnością udało nam się poczynić istotny krok w tym kierunku – przekonuje prof. Łodziana.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...