Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

CERN coraz bliżej zbadania antymaterii

Rekomendowane odpowiedzi

Naukowcy pracujący w CERN-ie przy eksperymencie ALPHA dokonali kolejnego istotnego kroku na drodze ku zrozumieniu antymaterii i budowy wszechświata. Eksperymentalnie wykazali, że są w stanie zbadać strukturę wewnętrzną atomu antywodoru. Wiemy, że jest możliwe zaprojektowanie eksperymentu, który pozwoli nam na wykonanie szczegółowych pomiarów antyatomów - mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.

Nasz wszechświat wydaje się niemal w całości zbudowany z materii. Antymateria gdzieś zniknęła. Tymczasem podczas Wielkiego Wybuchu powinno być jej tyle samo co materii. Zetknięcie materii i antymaterii prowadzi do ich anihilacji. Przewaga materii we wszechświecie sugeruje, że natura preferuje ją nad antymaterię. Jeśli uda się szczegółowo zbadać atomy antymaterii będziemy bliżsi odpowiedzi na pytanie o tę preferencję.

W czerwcu ubiegłego roku informowaliśmy, że ekspertom z CERN-u udało się uwięzić i przechować atomy antywodoru przez 1000 sekund. Wówczas Joel Fajans, jeden z naukowców pracujących przy ALPHA mówił, że tysiąc sekund to aż nadto czasu, by wykonać pomiary schwytanego antyatomu. To wystarczająco długo, by np. zbadać jego interakcję z promieniem lasera czy mikrofalami.

W skład atomu wodoru wchodzi elektron. Oświetlając atom laserem można doprowadzić do pobudzenia elektronu, który przeskoczy na wyższą orbitę, a następnie powróci na oryginalną orbitę, emitując przy tym światło. Możliwe jest bardzo precyzyjne zmierzenie spektrum tego światła, które w świecie materii jest unikatowe dla wodoru. Teoretycznie niemal identyczne spektrum powinniśmy uzyskać z pobudzenia atomu antywodoru. I właśnie dokonanie takiego pomiaru jest ostatecznym celem eksperymentu ALPHA.

Wodór to najbardziej rozpowszechniony pierwiastek we wszechświecie. Jego strukturę rozumiemy bardzo dobrze. Teraz możemy zacząć odkrywać prawdę o antywodorze. Czy są one różne? Czas pokaże - mówi Hangst.

Naukowcy dokonali właśnie pierwszych pomiarów antywodoru. Atomy najpierw zostały złapane w magnetyczną pułapkę. Następnie oświetlono je mikrofalami o precyzyjnie dobranej częstotliwości. To spowodowało zmianę orientacji magnetycznej antyatomów i uwolnienie się ich z pułapki. Wówczas antyatomy napotkały na atomy i doszło do ich anihilacji, co pozwoliło czujnikom na zarejestrowanie charakterystycznego wzorca tego zdarzenia. To z kolei dowiodło, że możliwe jest przeprowadzenie eksperymentu, w którym właściwości wewnętrzne atomu antywodoru zostaną zbadane za pomocą mikrofal.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone.
      Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki.
      Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem.
      Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      CERN poinformował, że w przyszłym roku przeprowadzi o 20% mniej eksperymentów, a w roku bieżącym akcelerator zostanie wyłączony 28 listopada, 2 tygodnie wcześniej, niż planowano. Zmiany mają związek z niedoborami energii i rosnącymi jej kosztami. W ten sposób CERN chce pomóc Francji w poradzeniu sobie z problemami z dostępnością energii.
      CERN kupuje 70–75% energii z Francji. Gdy wszystkie akceleratory w laboratorium pracują, zużycie energii wynosi aż 185 MW. Sama infrastruktura Wielkiego Zderzacza Hadronów potrzebuje do pracy 100 MW.
      W związku ze zbliżającą się zimą we Francji wprowadzono plan zredukowania zużycia energii o 10%. Ma to pomóc w uniknięciu wyłączeń prądu. Stąd też pomysł kierownictwa CERN, by pomóc w realizacji tego planu. Ponadto rozpoczęto też prace nad zmniejszeniem zapotrzebowania laboratorium na energię. Podjęto decyzję m.in. o wyłączaniu na noc oświetlenia ulicznego, rozpoczęcia sezonu grzewczego o tydzień później niż zwykle oraz zoptymalizowania ogrzewania pomieszczeń przez całą zimę.
      Działania na rzecz oszczędności energii nie są w CERN niczym niezwykłym. Laboratorium od wielu lat pracuje nad zmniejszeniem swojego zapotrzebowania i w ciągu ostatniej dekady konsumpcję energii udało się ograniczyć o 10%. Było to możliwe między innymi dzięki zoptymalizowaniu systemów chłodzenia w centrum bazodanowym, zoptymalizowaniu pracy akceleratorów, w tym zmniejszenie w nich strat energii.
      W CERN budowane jest właśnie nowe centrum bazodanowe, które ma ruszyć pod koniec przyszłego roku. Od początku zostało ono zaprojektowane z myślą o oszczędności energii. Znajdą się tam m.in. systemy odzyskiwania ciepła generowanego przez serwery. Będzie ono wykorzystywane do ogrzewania innych budynków laboratorium. Zresztą już teraz ciepło generowane w jednym z laboratoriów CERN jest używane do ogrzewania budynków w pobliskiej miejscowości Ferney-Voltaire. Trwają też prace nad optymalizacją systemu klimatyzacji i wentylacji oraz nad wykorzystaniem energii fotowoltaicznej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rada CERN jednogłośnie przyjęła dzisiaj plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Plan zakłada m.in. wybudowanie 100-kilometrowego akceleratora cząstek. O stworzeniu wstępnego raportu projektowego budowy Future Circular Collider (FCC) informowaliśmy na początku ubiegłego roku.
      The European Strategy for Particle Physics został po raz pierwszy przyjęty w 2006 roku, a w roku 2013 doczekał się pierwszej aktualizacji. Prace nad jego obecną wersją rozpoczęły się w 2018 roku, a w styczniu ostateczna propozycja została przedstawiona podczas spotkania w Niemczech. Teraz projekt zyskał formalną akceptację.
      CERN będzie potrzebował znaczniej międzynarodowej pomocy, by zrealizować swoje ambitne plany. Stąd też w przyjętym dokumencie czytamy, że Europa i CERN, za pośrednictwem Neutrino Platform, powinny kontynuować wsparcie dla eksperymentów w Japonii i USA. W szczególności zaś, należy kontynuować współpracę ze Stanami Zjednoczonymi i innymi międzynarodowymi partnerami nad Long-Baseline Neutriono Facility (LBNF) oraz Deep Underground Neutrino Experiment (DUNE).
      Obecnie szacuje się, że budowa nowego akceleratora, który byłby następcą Wielkiego Zderzacza Hadronów, pochłonie co najmniej 21 miliardów euro. Instalacja, w której dochodziłoby do zderzeń elektronów z pozytonami, miała by zostać uruchomiona przed rokiem 2050.
      Zatwierdzenie planów przez Radę CERN nie oznacza jednak, że na pewno zostaną one zrealizowane. Jednak decyzja taka oznacza, że CERN może teraz rozpocząć pracę nad projektem takiego akceleratora, jego wykonalnością, a jednocześnie rozważać inne konkurencyjne projekty dla następcy LHC. Myślę, że to historyczny dzień dla CERN i fizyki cząstek, zarówno w Europie jak i poza nią, powiedziała dyrektor generalna CERN Fabiola Gianotti po przyjęciu proponowanej strategii.
      Z opinią taką zgadzają się inni specjaliści. Dotychczas bowiem CERN rozważał wiele różnych propozycji. Teraz wiadomo, że skupi się przede wszystkim na tej jednej.
      Przyjęta właśnie strategia zakłada dwuetapowe zwiększanie możliwości badawczych CERN. W pierwszym etapie CERN wybuduje zderzacz elektronów i pozytonów, którego energia zostanie tak dobrana, by zmaksymalizować produkcję bozonów Higgsa i lepiej zrozumieć ich właściwości.
      Później instalacja ta zostanie rozebrana, a w jej miejscu powstanie potężny zderzacz protonów. Urządzenie będzie pracowało z energiami rzędu 100 teraelektronowoltów (TeV). Dla porównania, LHC osiąga energie rzędu 16 TeV.
      Zadaniem nowego zderzacza będzie poszukiwanie nowych cząstek i sił natury. Większość technologii potrzebna do jego zbudowania jeszcze nie istnieje. Będą one opracowywane w najbliższych dekadach.
      Co ważne, mimo ambitnych planów budowy 100-kilometrowego zderzacza, nowo przyjęta strategia zobowiązuje CERN do rozważenia udziału w International Linear Collider, którego projekt jest od lat forsowany przez japońskich fizyków. Japończycy są zadowoleni z takiego stanowiska, gdyż może pozwoli to na przekonanie rządu w Tokio do ich projektu.
      W przyjętej właśnie strategii czytamy, że CERN będzie kontynuował rozpoczęte już prace nad High Luminosity LHC (HL-LHC), czyli udoskonaloną wersją obecnego zderzacza. Budowa 100-kilometrowego tunelu i zderzacza elektronów i pozytonów ma rozpocząć się w roku 2038. Jednak zanim ona wystartuje, CERN musi poszukać pieniędzy na realizację swoich zamierzeń. Chris Llewellyn-Smith, były dyrektor generalny CERN, uważa, że do europejskiej organizacji mogłyby dołączyć Stany Zjednoczone, Japonia i Chiny, by powołać nową globalną organizację fizyczną.
      Nie wszyscy eksperci entuzjastycznie podchodzą do planów CERN. Sabine Hossenfelder, fizyk teoretyczna z Frankfurckiego Instytutu Zaawansowanych Badań krytykuje wydawanie olbrzymich kwot w sytuacji, gdy nie wiemy, czy zwiększanie energii zderzeń cząstek przyniesie jakiekolwiek korzyści naukowe poza pomiarami właściwości już znanych cząstek. Z opinią tą zgadza się Tara Shears z University of Liverpool. Uczona zauważa, że o ile powodem, dla którego budowano LHC było poszukiwanie bozonu Higgsa i urządzenie spełniło stawiane przed nim zadanie, to obecnie brak dobrze umotywowanych powodów naukowych, by budować jeszcze potężniejszy akcelerator. Nie mamy obecnie żadnych solidnych podstaw. A to oznacza, że cały projekt obarczony jest jeszcze większym ryzykiem, mówi. Dodaje jednak, że jednocześnie wiemy, że jedynym sposobem na znalezienie odpowiedzi są eksperymenty, a jedynymi miejscami, gdzie możemy je znaleźć są te miejsca, w które jeszcze nie zaglądaliśmy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Doktor Agnieszka Dziurda z Instytutu Fizyki Jądrowej PAN stoi na czele międzynarodowego zespołu naukowego, który w CERN prowadzi badania nad oscylacjami cząstek pomiędzy światem materii i antymaterii. Co prawda materia i antymateria wydają się swoimi przeciwieństwami, jednak istnieją cząstki, które raz zachowują się jak należące do świata materii, a raz antymaterii. Grupa doktor Dziurdy zmierzyła właśnie ekstremalne tempo oscylacji takich cząstek.
      Naukowcy wzięli na warsztat mezony Bs0 i za pomocą detektora LHCb z niespotykaną dotychczas dokładnością zbadali ich oscylacje. Nie byli pierwszymi, którzy podjęli się tego zadania. Już w 2006 roku w amerykańskim Fermilab mierzono to zjawisko. Nam udało się teraz poprawić dokładność pierwotnego pomiaru aż o dwa rzędy wielkości, chwali się doktor Dziurda.
      Materia widzialna jest złożona głównie z kwarków górnych, dolnych, elektronów i neutrin elektronowych. Na przykład jądra atomów zbudowane są z protonów (składających się z 2 kwarków górnych i 1 kwarka dolnego) oraz neutronów (1 kwark górny i 2 kwarki dolne). Model Standardowy klasyfikuje kwark górny, dolny, elektron i neutrino elektronowe jako cząstki jednej generacji. Istnieją jeszcze dwie inne generacje, z cząstkami o podobnych właściwościach, ale coraz bardziej masywnych.
      Kwarki nie występują swobodnie. Łączą się z innymi kwarkami. A najprostsze takie połączenie tworzy mezon, złożony z par kwark-antykwark. Mezony mogą przenosić ładunek elektryczny, lecz nie muszą. Te pozbawione ładunku elektrycznego, określane jako neutralne, wykazują frapującą cechę: oscylują między postacią materialną a antymaterialną. My skupiliśmy się na analizie częstotliwości oscylacji neutralnych mezonów zawierających kwark piękny b z trzeciej generacji i kwark dziwny s z drugiej, oznaczonych jako Bs0, mówi doktor Dziurda.
      Mezony są niestabilne i rozpadają się w czasie pikosekund. Jedna pikosekunda to 0,000000000001. Jednak zgodnie z zasadami mechaniki kwantowej, produkty rozpadu neutralnych mezonów są różne, w zależności od tego, czy w momencie rozpadu znajdowały się w świecie materii czy antymaterii. Zatem dopiero po zarejestrowaniu i zidentyfikowaniu produktów rozpadu danego mezonu mogliśmy ustalić, czy rozpadł się on jako reprezentant świata materii, czy antymaterii. Połączenie tej wiedzy z informacją o naturze cząstki w momencie produkcji pozwoliło nam na pomiar częstotliwości oscylacji, stwierdza polska uczona.
      Zespół Dziurdy przeanalizował mezony Bs0 powstałe w latach 2015–2018 w Wielkim Zderzaczu Hadronów jako wynik zderzeń proton-proton o łącznej energii 13 TeV (teraelektronowoltów). Badania wykazały, że mezony te oscylują pomiędzy materią i antymaterią 3 tryliony razy na sekundę. To aż 300-krotnie szybciej niż oscylacje typowego cezowego zegara atomowego.
      Badania takie nie tylko potwierdzają przewidywania mechaniki kwantowej, ale pozwalają zawęzić też obszar poszukiwania nieznanych cząstek spoza Modelu Standardowego.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W CERN zakończono najbardziej precyzyjne w historii eksperymenty, których celem było sprawdzenie czy materia i antymateria reagują tak samo na oddziaływanie grawitacji. Trwające 1,5 roku badania z wykorzystaniem protonów i antyprotonów przeprowadzili specjaliści z eksperymentu BASE (Baryon Antibaryon Symmetry Experiment).
      Naukowcy zmierzyli stosunek ładunku do masy protonu i antyprotonu z dokładnością 16 części na bilion. To najbardziej precyzyjny ze wszystkich testów symetrii materii i antymaterii przeprowadzony na cząstkach złożonych z trzech kwarków, zwanych barionami, i ich antycząstkach, mówi Stefan Ulmer, rzecznik prasowy BASE.
      Zgodnie z Modelem Standardowym cząstki i antycząstki mogą się od siebie różnić, jednak większość właściwości, szczególnie ich masa, powinno być identycznych. Znalezienie różnicy masy pomiędzy protonami a antyprotonami lub też różnicy w ich stosunku ładunku do masy, oznaczałoby złamanie podstawowej symetrii Modelu Standardowego, symetrii CPT. Byłby to również dowód na znalezienie fizyki wykraczającej poza opisaną Modelem Standardowym.
      Istnienie takiej różnicy mogłoby doprowadzić do wyjaśnienia, dlaczego wszechświat składa się głównie z materii, mimo że podczas Wielkiego Wybuchu powinny powstać takie same ilości materii i antymaterii. Różnice pomiędzy cząstkami materii i antymaterii zgodne z Modelem Standardowym, są o rzędy wielkości zbyt małe, by wyjaśnić obserwowaną nierównowagę.
      Naukowcy z BASE wykorzystali podczas swoich pomiarów antyprotony i jony wodoru, które służyły jako ujemnie naładowane przybliżenia protonów. Umieszczono je w tzw. pułapce Penninga. Badania prowadzono pomiędzy grudniem 2017 roku a majem 2019. Później przystąpiono do opracowywania wyników, a po zakończeniu prac w najnowszym numerze Nature poinformowano o rezultatach.
      Po uwzględnieniu różnic pomiędzy jonami wodoru a protonami okazało się, że stosunek ładunku do masy protonu jest z dokładnością do 16 części na miliard identyczny ze stosunkiem ładunku do masy antyprotonu. To czterokrotnie bardziej dokładne obliczenia niż wszystko, co udało się wcześniej uzyskać, mówi Stefan Ulmer. Aby dokonać tak precyzyjnych pomiarów musieliśmy najpierw znacznie udoskonalić nasze narzędzia. Badania przeprowadziliśmy w czasie, gdy urządzenia wytwarzające antymaterię były nieczynne. Wykorzystaliśmy więc magazyn antyprotonów, w którym mogą być one przechowywane przez lata, dodaje.
      Prowadzenie eksperymentów w pułapce Penninga w czasie, gdy urządzenia wytwarzające antymaterię nie działają, pozwala na uzyskanie idealnych warunków, gdyż nie występują zakłócające badania pola magnetyczne generowane przez „fabrykę antymaterii”.
      Naukowcy z BASE nie ograniczyli się tylko do niespotykanie precyzyjnego porównania protonów i antyprotonów. Przeprowadzili też testy słabej zasady równoważności. Wynika ona z teorii względności i głosi, że zachowanie wszystkich obiektów w polu grawitacyjnym jest niezależne od ich właściwości, w tym masy. Oznacza to, że jeśli pominiemy inne siły – jak np. siłę tarcia – reakcja wszystkich obiektów na oddziaływanie grawitacji jest taka sama. Przykładem może być tutaj piórko i młotek, które w próżni powinny opadać z tym samym przyspieszeniem.
      Orbita Ziemi wokół Słońca ma kształt elipsy, co oznacza, że obiekty uwięzione w pułapce Penninga będą odczuwały niewielkie zmiany oddziaływania grawitacyjnego. Okazało się, że zarówno proton i antyproton identycznie reagują na te zmiany. Uczeni z BASE potwierdzili, że słaba zasada równoważności odnosi się zarówno do materii jak i antymaterii z dokładnością około 3 części na 100.
      Ulmer podkreśla, że uzyskana w tym eksperymencie precyzja jest podobna do założeń eksperymentu, w ramach których CERN chce badać antywodór podczas spadku swobodnego w polu grawitacyjnym Ziemi. BASE nie prowadziło eksperymentu ze swobodnym spadkiem antymaterii w polu grawitacyjnym Ziemi, ale nasze pomiary wpływu grawitacji na antymaterię barionową są co do założeń bardzo podobne do planowanego eksperymentu. To wskazuje, że w dopuszczonym zakresie niepewności nie znaleźliśmy żadnych anomalii w interakcjach pomiędzy antymaterią a grawitacją.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...