-
Similar Content
-
By KopalniaWiedzy.pl
Sposób poruszania się owadów czy gadów po pionowych powierzchniach od dawna interesuje naukowców, którzy chcieliby stworzyć urządzenia, poruszające się w ten sam sposób. Wiadomo, że zwierzęta przemieszczają się po różnych powierzchniach nachylonych pod różnymi kątami dlatego, że ich kończyny wyposażone są w miniaturowe włoski. James Bullock i Walter Federle z University of Cambridge są pierwszymi uczonymi, którym udało się zmierzyć siłę potrzebną do oderwania pojedynczego włoska od powierzchni.
Uczeni badali żuki, u których włoski na nogach mają trzy różne kształty: z końcówkami w kształcie punktu, łopatki oraz dysku. Są one rozłożone na nogach w specyficzny wzór, co sugeruje różne funkcje. Średnica każdego z włosków wynosi zaledwie 1/200 milimetra, dlatego też dotychczas nikomu nie udało się zmierzyć właściwości pojedynczego włosa. Dopiero Bullock i Federle wpadli na pomysł, jak to zrobić. Do włosków przymocowali niewielkie wsporniki ze szkła i obserwując pod mikroskopem odkształcanie się szkła podczas ruchu żuka, szacowali działające siły.
Badania wykazały, że najmocniej przyczepiają się do powierzchni włoski zakończone dyskiem, słabiej te, których końcówka przypomina łopatkę, a najsłabiej - zakończone punktowo. Dyski były też najbardziej sztywne, prawdopodobnie zapewniają stopie stabilność. Zdaniem Bullocka i Federle to właśnie włoski zakończone dyskami ogrywają zasadniczą rolę podczas poruszania się po gładkich powierzchniach. Samcom przydają się też do trzymania samicy podczas kompulacji. Uczeni spekulują, że dwa pozostałe typy włosków pozwalają na szybkie odrywanie stóp od powierzchni podczas marszu do góry nogami.
Naukowcy mówią, że zanim nauczymy się naśladować naturę potrzeba jeszcze szeregu badań. Pytanie w jaki sposób siły pojedynczego włoska przekładają się na sposób poruszania się całego zwierzęcia to wciąż nierozwiązana kwestia. Jej zrozumienie jest konieczne do stworzenia sztucznych przylepców wzorowanych na systemach naturalnych - zauważają uczeni.
-
By KopalniaWiedzy.pl
Dla naukowców ważne było, że zaatakowany gekon odrzuca swój ogon, co w wielu przypadkach pozwala mu uciec przed drapieżnikiem. Nikt jednak nie interesował się samym ogonem, który – już bez właściciela – nadal wije się, podskakuje i ucieka. Pozostaje aktywny nawet do 30 minut, w dodatku porusza się czasem w niewidywany dotąd sposób (Biology Letters).
Wcześniejsze eksperymenty wykazały, że "tańczący" ogon mami napastnika, który sądzi, że ma nadal do czynienia z wybranym do upolowania kąskiem. Jaszczurka wykorzystuje odrzucenie ogona - autotomię - w dwojaki sposób. Nie tylko opóźnia pościg (lub pozbywa się go raz na zawsze), ale także staje się lżejsza, przez co może biec prędzej. Niestety, natura nie bez kozery wyposażyła gekony w ogon; gdy go zabraknie, skakanie i wspinanie stają się o wiele trudniejsze, a i znalezienie partnera/partnerki wymaga wzmożonego wysiłku.
Profesor Anthony Russell z Uniwersytetu w Calgary i Timothy Higham z Clemson University postanowili dokładniej zbadać wzorce poruszania się porzuconego ogona. Za pomocą elektromiografii (EMG) i nagrywania szybkoklatkowego monitorowali "zachowanie" ogonów 4 okazów gekona tygrysiego (Eublepharis macularius).
W odróżnieniu od ruchów zwierząt lub części ich ciała, które odbywają się bez kontroli mózgu, ogon gekona nie rzuca się rytmicznie, a przynajmniej nie tylko. Odkryliśmy, że ma intrygujący repertuar zróżnicowanych i wyjątkowo złożonych ruchów – tłumaczy Russell.
Ruchy odrzuconego ogona badano dotąd w ramach jednego tylko studium, ale amerykańsko-kanadyjski zespół jako pierwszy połączył wzorce ruchu z aktywnością mięśniową. Odkrycia są niezmiernie ważne, ponieważ wszystko wskazuje na to, że gekoni ogon może stanowić użyteczny model do badania złożonych funkcji rdzenia kręgowego oraz skutków jego uszkodzenia. Odrzucenie ogona przez jaszczurkę jest kontrolowane przez znajdującą się w nim część rdzenia kręgowego. Odseparowany od reszty ciała ogon pozwala badać zagadnienie, w jaki sposób nerwy i mięśnie współpracują ze sobą, by generować skomplikowane ruchy bez udziału mózgu. Russell i Higham stwierdzili, że sygnały odpowiedzialne za ruchy pochodzą z końcówki ogona, co oznacza, że jest tam centrum kontrolne, tłumione w zwykłych okolicznościach (przed odrzuceniem ogona) przez ośrodki wyższe.
Higham dodaje, że na razie nie znaleziono odpowiedzi na pytanie, co stanowi źródło stymulacji inicjującej ruchy ogona. Najbardziej prawdopodobne wyjaśnienie jest takie, że ogon polega na czuciowej informacji zwrotnej ze środowiska. Umiejscowione na jego powierzchni "czujniki" nakazują: teraz skacz, obracaj się wokół osi lub przemieszczaj w określonym kierunku.
-
By KopalniaWiedzy.pl
Badania Tony'ego Russella, zoologa z University of Calgary, rzucają nieco światła na niezwykłe właściwości gekonów. Zwierzęta te, jak wiemy, potrafią poruszać się po najróżniejszych podłożach i wędrować po pionowych płaszczyznach.
Naukowcy wiedzą, że jest to możliwe dzięki olbrzymiej liczbie mikroskopijnych włosków, pokrywających łapy gekona. Okazuje się również, że zwierzęta nie zawsze korzystają z "przylepnych" właściwości swoich łap.
Russell postanowił dowiedzieć się, kiedy gekon porusza się jak inne zwierzęta, a kiedy zaczyna "przyklejać się" do powierzchni po której idzie. Uczony umieszczał zwierzęta na automatycznych bieżniach pokrytych albo śliskim pleksiglasem, albo szorstkim papierem. Okazało się, że nawet idąc po pleksiglasie gekony nie korzystały z możliwości "przyklejenia się", mimo iż wyraźnie łapy im się ślizgały.
Niektóre zwierzęta zaczęły "kleić się" do podłoża wówczas, gdy nachylono je pod kątem 10 stopni. Gdy musiały iść pod kątem 30 stopni - wszystkie korzystały z "lepkich łap".
Okazuje się zatem, że niezwykły mechanizm nie jest uruchamiany ze względu na rodzaj podłoża, ale decyduje o tym jego nachylenie.
Odkrycie to zdziwiło naukowców. Gdybym była gekonem z pewnością zastanowiłabym się nad przyklejeniem się do śliskiego podłoża gdyby moje łapy się ślizgały, a za mną pędziłby drapieżnik - mówi biofizyk Kellar Autumn z Lewis & Clark College.
Russell spekuluje, że być może gekony posiadają w uszach mechanizm, który informuje je, kiedy wykorzystanie "przylepca" i ryzykowanie tym samym uszkodzenia włosków jest opłacalne.
Badania pokazują, jak niezwykłymi zwierzętami są gekony. Wcześniej naukowcy zabierali jaszczurki i węże na pokład samolotu, który, swobodnie spadając, umożliwia doświadczenie braku siły ciążenia. Większość zwierząt wpadała w panikę, próbując uczepić się czegokolwiek. Gekony natomiast zachowywał spokój i wyciągały łapy tak, jakby surfowały w przestworzach. Można więc przypuszczać, że odczuwają one grawitację w inny sposób, niż większość zwierząt.
Badania nad gekonami cieszą specjalistów zajmujących się... robotami. Mają bowiem nadzieję, że od gekonów nauczą się, w jaki sposób skonstruować maszynę poruszającą się po różnego typu podłożach.
-
By KopalniaWiedzy.pl
Nocne gekony to jedne z nielicznych stworzeń, które widzą kolory po zmroku. Naukowcy z Lund University odkryli, że zawdzięczają to ułożonym koncentrycznie obszarom o różnych właściwościach odbijających. Szwedzi przekonują, że podobne struktury można by wykorzystać do ulepszenia aparatów fotograficznych i stworzenia wieloogniskowych szkieł kontaktowych (Journal of Vision).
Na jedyny w swoim rodzaju układ optyczny oczu jaszczurki składają się wyłącznie czopki. Badacze wyliczyli, że są one 350-krotnie bardziej wrażliwe niż ludzkie czopki.
Jak wyjaśnia Lina Roth z Wydziału Biologii Organizmów i Komórki, system wieloogniskowy sprawia, że na siatkówce skupiają się jednocześnie promienie świetlne o różnej długości. Niewykluczone też, że dzięki tej cesze gekon z gatunku Tarentola chazaliae koncentruje wzrok na kilku mniej lub bardziej oddalonych obiektach naraz. Oznacza to, że jaszczurka jest w stanie uzyskać ostre obrazy na co najmniej dwóch poziomach głębi. Gekony aktywne w dzień nie zostały przez naturę wyposażone w zestaw koncentrycznych obszarów, a ich widzenie jest monoogniskowe.
Szwedzi stworzyli nową metodę pozyskiwania danych optycznych od żywych zwierząt. W tym celu zmodyfikowali czujnik Hartmanna-Shacka, który służy do pomiaru nachylenia frontu falowego czy inaczej mówiąc – aberracji falowych oka. Badania zwierząt ze stosunkowo dużymi oczami, np. sów czy kotów, wymagały operacji i unieruchamiania głowy. W naszym studium zademonstrowaliśmy, że pomiary dotyczące niewielkich oczu gekona da się przeprowadzić bez jakiejkolwiek [sztucznej] kontroli spojrzenia czy akomodacji.
-
By KopalniaWiedzy.pl
Można sobie wyobrazić zdziwienie doktora Petera Beaumonta, który podczas wbijania kurzego jaja na patelnię znalazł w środku martwego gekona. W skorupce nie było otworu, musiał się więc tam dostać w inny sposób.
Naukowiec nie zwróciłby może uwagi na jajko, gdyby jego zawartość nie była zmętniała. Okazało się, że mała jaszczurka znajdowała się między skorupką a zewnętrzną blaszką pergaminową.
Wg Beaumonta, szefa Australijskiego Stowarzyszenia Medycznego Terytoriów Północnych, gekon mógł się dostać do dróg rodnych samicy po zapłodnieniu, ale przed ostatecznym uformowaniem jaja (kolejne jego osłonki nadbudowują się podczas przemieszczania przez jajowód). Chciał się pożywić zarodkiem, ale nie przeżył i został schwytany w pułapkę jaja.
Lekarz powiedział telewizji ABC, że czasem podczas patroszenia kur można natrafić na częściowo wykształcone jaja. Gekon poszukiwał prawdopodobnie takiego smakołyku. Niewykluczone, że znalezisko Beaumonta jest jednym z pierwszych tego typu na świecie. Naukowiec przekazał skorupkę do dalszych badań. Zajmą się nią odpowiednie agendy Ministerstwa Zdrowia.
Przedstawiciele Australian Egg Corporation przyznają, że nigdy wcześniej nie słyszeli o takim przypadku. David Witcombe, menedżer firmowego działu badań, zaznacza, że z oczywistych względów gekon nie mógł trafić do jaja z przewodu pokarmowego. Jedyna droga wiedzie więc przez kloakę, czyli końcowy odcinek jelita, do którego uchodzą moczowody i jajowody.
-
-
Recently Browsing 0 members
No registered users viewing this page.