Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

LHC zwiększa moc i szykuje się do długiego przestoju

Recommended Posts

CERN poinformował, że w bieżącym roku energia strumieni cząstek w Wielkim Zderzaczu Hadronów (LHC) zostanie zwiększona do 4 teraelektronowoltów (TeV). Będzie zatem o 0,5 TeV większa niż w latach 2010-2011. Ma to pomóc w zebraniu jak największej ilości danych przed wyłączeniem akceleratora na dłuższy czas.

Cele, które naukowcy chcą osiągnąć w bieżącym roku to uzyskanie 15 odwrotnych femtobarnów w eksperymentach ATLAS i CMS. Odwrotny femtobarn oznacza liczbę interakcji cząsteczek na 1 femtobarn. Naukowcy mają zatem zamiar aż trzykrotnie zwiększyć ilość pozyskanych danych. Jeden odwrotny femtobarn to w praktyce około 70 bilionów zderzeń.

Gdy rozpoczynaliśmy w 2010 roku prace z LHC zdecydowaliśmy się na pracę z wiązkami o najniższej bezpiecznej energii. Dwa lata pracy z wiązkami i wiele pomiarów wykonanych w 2011 roku upewniło nas, że możemy bezpiecznie podnieść poprzeczkę i rozpocząć bardziej ambitne eksperymenty, zanim na długi czas zamkniemy LHC - mówi Steve Myers dyrektor CERN ds. akceleratorów i technologii.

Pod koniec bieżącego roku LHC zostanie zamknięty na około 20 miesięcy. Podczas tej przerwy Wielki Zderzacz Hadronów będzie przystosowywany do pracy z maksymalną przewidzianą mocą - 7 TeV na wiązkę. Urządzenie zostanie ponownie uruchomione pod koniec 2014 roku, a pełną moc osiągnie w roku 2015.

Share this post


Link to post
Share on other sites

"Gdy rozpoczynaliśmy w 2010 roku prace z LHC zdecydowaliśmy się na pracę z wiązkami o najniższej bezpiecznej energii."

 

Na czym polega niebezpieczeństwo energii stosowanej w LHC, skoro mowa jest o "bezpiecznej energii" ?

Share this post


Link to post
Share on other sites

Na czym polega niebezpieczeństwo energii stosowanej w LHC, skoro mowa jest o "bezpiecznej energii" ?

Boją się, że zrobią małą czarną dziurę.

Share this post


Link to post
Share on other sites

Odpowiedź masz w artykule:

Pod koniec bieżącego roku LHC zostanie zamknięty na około 20 miesięcy. Podczas tej przerwy Wielki Zderzacz Hadronów będzie przystosowywany do pracy z maksymalną przewidzianą mocą - 7 TeV na wiązkę. Urządzenie zostanie ponownie uruchomione pod koniec 2014 roku, a pełną moc osiągnie w roku 2015.

Share this post


Link to post
Share on other sites

"Gdy rozpoczynaliśmy w 2010 roku prace z LHC zdecydowaliśmy się na pracę z wiązkami o najniższej bezpiecznej energii."

 

Na czym polega niebezpieczeństwo energii stosowanej w LHC, skoro mowa jest o "bezpiecznej energii" ?

Główne niebezpieczeństwo polega na możliwości zepsucia się urządzenia wartego wiele milionów euro. LHC było budowane z części, a połączenia między nimi nie były niestety idealne. Dotyczy to głównie połączenia nadprzewodników, w przypadku których nawet małą niedoskonałość może spowodować powstanie mikroskopijnego oporu. Przy proądach jakie tam biegną jest to dość by wytworzyć ciepło i wyprowadzić cały fragment przewodu z nadprzewodnictwa. A to oznacza, że wydzieli się dość ciepłą by odparować spory fragment urządzenia. Taki incydent się zresztą już zdarzył.

Powolne uruchamianie LHC na na celu zmniejszenie tego ryzyka. Połączenia "zwiększają swoją jakość" podczas działania, co powoduje, że można przepuścić większe prądy i tak w kółko, aż do pewnego etapu.

Potem i tak będzie trzeba urządzenie wyłączyć, a wszystkie połączenia poprawić (zostało to podobno zrobione nierzetelnie przy budowie, ale nie znam szczegółów).

  • Upvote (+1) 2

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Jednym ze sposobów na pozyskiwanie odnawialnej energii jest wykorzystanie różnicy chemicznych pomiędzy słodką i słoną wodą. Jeśli naukowcom uda się opracować metodę skalowania stworzonej przez siebie technologii, będą mogli dostarczyć olbrzymią ilość energii milionom ludzi mieszkających w okolica ujścia rzek do mórz i oceanów.
      Każdego roku rzeki na całym świecie zrzucają do oceanów około 37 000 km3 wody. Teoretycznie można tutaj pozyskać 2,6 terawata, czyli mniej więcej tyle, ile wynosi produkcja 2000 elektrowni atomowych.
      Istnieje kilka metod generowania energii z różnicy pomiędzy słodką a słoną wodą. Wszystkie one korzystają z faktu, że sole złożone są z jonów. W ciałach stałych ładunki dodatnie i ujemne przyciągają się i łączą. Na przykład sól stołowa złożona jest z dodatnio naładowanych jonów sodu połączonych z ujemnie naładowanymi jonami chloru. W wodzie jony takie mogą się od siebie odłączać i poruszać niezależnie.
      Jeśli po dwóch stronach półprzepuszczalnej membrany umieścimy wodę z dodatnio i ujemnie naładowanymi jonami, elektrony będą przemieszczały się od części ujemnie naładowanej do części ze znakiem dodatnim. Uzyskamy w ten sposób prąd.
      W 2013 roku francuscy naukowcy wykorzystali ceramiczną błonę z azotku krzemu, w którym nawiercili otwór, a w jego wnętrzu umieścili nanorurkę borowo-azotkową (BNNT). Nanorurki te mają silny ujemny ładunek, dlatego też Francuzi sądzili, że ujemnie naładowane jony nie przenikną przez otwór. Mieli rację. Gdy po obu stronach błony umieszczono słoną i słodką wodę, przez otwór przemieszczały się niemal wyłącznie jony dodatnie.
      Nierównowaga ładunków po obu stronach membrany była tak duża, że naukowcy obliczyli, iż jeden metr kwadratowy membrany, zawierający miliony otworów na cm2 wygeneruje 30 MWh/rok. To wystarczy, by zasilić 400 gospodarstw domowych.
      Problem jednak w tym, że wówczas stworzenie nawet niewielkiej membrany tego typu było niemożliwe. Nikt bowiem nie wiedział, w jaki sposób ułożyć długie nanorurki borowo-azotkowe prostopadle do membrany.
      Przed kilkoma dniami, podczas spotkania Materials Research Society wystąpił Semih Cetindag, doktorant w laboratorium Jerry'ego Wei-Jena na Rutgers University i poinformował, że jego zespołowi udało się opracować odpowiednią technologię. Nanorurki można kupić na rynku. Następnie naukowcy dodają je do polimerowego prekursora, który jest nanoszony na membranę o grubości 6,5 mikrometrów. Naukowcy chcieli wykorzystać pole magnetyczne do odpowiedniego ustawienia nanorurek, jednak BNNT nie mają właściwości magnetycznych.
      Cetindag i jego zespół pokryli więc ujemnie naładowane nanorurki powłoką o ładunku dodatnim. Wykorzystane w tym celu molekuły są zbyt duże, by zmieścić się wewnątrz nanorurek, zatem BNNT pozostają otwarte. Następnie do całości dodano ujemnie naładowane cząstki tlenku żelaza, które przyczepiły się do pokrycia nanorurek. Gdy w obecności tak przygotowanych BNNT włączono pole magnetyczne, można było manewrować nanorurkami znajdującymi się w polimerowym prekursorze nałożonym na membranę.  Później za pomocą światła UV polimer został utwardzony. Na koniec za pomocą strumienia plazmy zdjęto z obu stron membrany cienką warstwę, by upewnić się, że nanorurki są z obu końców otwarte. W ten sposób uzyskano membranę z 10 milionami BNNT na każdy centymetr kwadratowy.
      Gdy taką membranę umieszczono następnie pomiędzy słoną a słodką wodą, uzyskano 8000 razy więcej mocy na daną powierzchnię niż podczas eksperymentów prowadzonych przez Francuzów. Shan mówi, że tak wielki przyrost mocy może wynikać z faktu, że jego zespół wykorzystał węższe nanorurki, zatem mogły one lepiej segregować ujemnie naładowane jony.
      Co więcej, uczeni sądzą, że membrana może działać jeszcze lepiej. Nie wykorzystaliśmy jej pełnego potencjału. W rzeczywistości tylko 2% BNNT jest otwartych z obu stron, mówi Cetindag. Naukowcy pracują teraz nad zwiększeniem odsetka nanorurek otwartych z obu stron membrany.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Część fizyków uważa, że w Wielkim Zderzaczu Hadronów (LHC) powstają długo żyjące cząstki, które dotychczas nie zostały wykryte. W przyszłym tygodniu w CERN odbędzie się spotkanie, na którym zostaną omówione metody zarejestrowania tych cząstek.
      W 2012 roku LHC zarejestrował obecność bozonu Higgsa, ostatniej nieuchwyconej wcześniej cząstki przewidywanej przez Model Standardowy. Jednak od tamtej pory nie znaleziono niczego nowego czy niespodziewanego. Niczego, co wykracałowy poza Model Standardowy. Nie odkryliśmy nowej fizyki, nie potwierdziliśmy założeń, z jakimi rozpoczynaliśmy prace. Może należy zmienić te założenia, mówi Juliette Alimena z Ohio State University, która pracuje przy CMS (Compact Muon Solenoid), jednym z dwóch głównych detektorów cząstek w LHC.
      Pomimo tego, że w LHC zainwestowano miliardy dolarów, to urządzenia pracuje tak, jak pracowały akceleratory przed kilkudziesięcioma laty. Fizycy od dekad zderzają ze sobą protony lub elektrony, zwiększają ich energie, by w procesie tym uzyskać nowe ciężkie cząstki i obserwować, jak w ciągu biliardowych części sekundy rozpadają się na lżejsze, znane nam cząstki. Te lżejsze są wykrywane i na podstawie ich charakterystyk wiemy, z jakich cięższych cząstek pochodzą. Tak właśnie działa i CMS i drugi z głównych wykrywaczy LHC – ATLAS (A Toroidal LHC Apparatus).
      Jednak długo żyjące ciężkie cząstki mogą umykać uwadze detektorów. Przypuszczenie takie nie jest nowe. Niemal wszystkie teorie wykraczające poza standardowe modele fizyczne przewidują istnienie długo żyjących cząstek, mówi Giovanna Cottin, fizyk-teoretyk z Narodowego Uniwersytetu Tajwańskiego. Na przykład teoria supersymetrii mówi, że każda z cząstek Modelu Standardowego ma cięższego partnera. Istnieją teorie mówiące też o istnieniu np. ciemnych fotonów i innych „ciemnych” cząstek. Dotychczas niczego takiego nie udało się zaobserwować.
      LHC nie został zaprojektowany do poszukiwania cząstek wykraczających poza Model Standardowy. CMS i ATLAS skonstruowano tak, by wykrywały cząstki ulegające natychmiastowemu rozpadowi. Każdy z nich zawiera warstwowo ułożone podsystemy rejestrujące produkty rozpadu cząstek. Wszystkie one ułożone są wokół centralnego punktu, w którym dochodzi do zderzenia. Jednak problem w tym, że jeśli w wyniku zderzenia powstanie cząstka, która będzie żyła tak długo, iż przed rozpadem zdoła przebyć chociaż kilka milimetrów, to pozostawi ona po sobie nieoczywiste sygnały, smugi, zaburzone trasy ruchu.
      Oprogramowanie służące do analiz wyników z detektorów odrzuca takie dane, traktując je jak zakłócenia, artefakty. To problem, bo my tak zaprojektowaliśmy eksperymenty, a programiści tak napisali oprogramowanie, że po prostu odfiltrowuje ono takie rzeczy, mówi Tova Holmes z University of Chicago, która w wykrywaczu ATLAS poszukuje takich zaburzeń.
      Holmes i jej koledzy wiedzą, że muszą zmienić oprogramowanie. Jednak to nie wystarczy. W pierwszym rzędzie należy upewnić się, że wykrywacze w ogóle będą rejestrowały takie dane. Jako, że w w LHC w ciągu sekundy dochodzi do 400 milionów zderzeń protonów, w samym sprzęcie zastosowano mechanizmy chroniące przed przeładowaniem danymi. Już na poziomie sprzętowym dochodzi do odsiewania zderzeń i podejmowania decyzji, które są interesujące, a które należy odrzucić. W ten sposób do dalszej analizy kierowane są dane z 1 na 2000 zderzeń. To zaś oznacza, że możemy mieć do czynienia z utratą olbrzymiej ilości interesujących danych. Dlatego też część naukowców chciałaby przyjrzeć się kalorymetrowi CMS, do którego mogą docierać długo żyjące ciężkie cząstki. Chcieliby zastosować mechanizm, który od czasu do czasu będzie odczytywał pełne wyniki wszystkich zderzeń.
      Szukanie ciężkich cząstek nigdy nie było łatwe, chociażby dlatego, że naukowcy mieli różne pomysły na to, jak je zarejestrować. To zawsze było tak, że pracowały nad tym pojedyncze osoby. A każdy z nich sam dla siebie stanowił grupę wsparcia, przyznaje James Beacham z Ohio State University. Teraz zainteresowani połączyli siły i w marcu ukazało się 301-stronicowe opracowanie autorstwa 182 naukowców, w którym zaproponowano metody optymalizacji poszukiwań ciężkich cząstek.
      Niektórzy z nich proponują, by w najbliższej kampanii, planowanej na lata 2012–2023 częściej zbierano kompletne dane ze wszystkich zderzeń. Niewykluczone, że to ostatnia szansa na zastosowanie tej techniki, gdyż później intensywność generowanych wiązek zostanie zwiększona i zbieranie wszystkich danych stanie się trudniejsze.
      Inni chcą zbudowania kilku nowych detektorów wyspecjalizowanych w poszukiwaniu ciężkich cząstek. Jonathan Feng, fizyk-teoretyk z Uniwersytetu Kalifornijskiego w Irvine, wraz z kolegami uzyskali nawet od CERN zgodę na zbudowanie Forward Search Experiment (FASER). To niewielki detektor, który ma zostać umieszczony w tunelu serwisowym w odległości 480 metrów w dół wiązki od ATLAS-a. Naukowcy zebrali już nawet 2 miliony dolarów od prywatnych sponsorów i dostali potrzebne podzespoły. FASER ma poszukiwać lekkich cząstek, takich jak ciemne fotony, które mogą być wyrzucane z ATLAS-a, przenikać przez skały i rozpadać się w pary elektron-pozyton.
      Jeszcze inna propozycja zakłada wykorzystanie pustej komory znajdującej się za niewielkim wykrywaczem LHCb. Umieszczony tam Compact Detector for Exotics at LHCb miałby poszukiwać długo żyjących cząstek, szczególnie tych pochodzących z rozpadu bozonu Higgsa.
      Jednak najbardziej ambitną propozycją jest budowa detektora o nazwie MATHULSLA. Miałby to być wielki pusty budynek wzniesiony na powierzchni nad detektorem CMS. W jego dachu miałyby zostać umieszczone czujniki, które rejestrowałyby dżety pochodzące z rozpadu długo żyjących cząstek powstających 70 metrów poniżej, wyjaśnia David Curtin z Uniwersytetu w Toronto, jeden z pomysłodawców wykrywacza. Uczony jest optymistą i uważa, że detektor nie powinien kosztować więcej niż 100 milionów euro.
      Po nocach śni nam się koszmar, w którym Jan Teoretyk powie nam za 20 lat, że niczego nie odkryliśmy bo nie rejestrowaliśmy odpowiednich wydarzeń i nie prowadziliśmy właściwych badań, mówi Beacham, który pracuje przy wykrywaczu ATLAS.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W CERN powstanie kolejny eksperyment przy Wielkim Zderzaczu Hadronów (LHC). Jednym z jego pomysłodawców jest Polak, dr Sebastian Trojanowski z Zakładu Fizyki Teoretycznej NCBJ. FASER – bo tak ma nazywać się nowa instalacja – będzie multidetektorem przeznaczonym do poszukiwania długożyciowych cząstek powstających w zderzeniach LHC i mogących być sygnałem istnienia hipotetycznej ciemnej materii. Obserwacje astronomiczne wskazują, że ciemnej materii powinno być we Wszechświecie kilkakrotnie więcej niż zwykłej materii "atomowej" tworzącej ludzi, planety i gwiazdy.
      Koncepcja eksperymentu FASER została zaproponowana przez dr Sebastiana Trojanowskiego i trzech innych fizyków teoretyków współpracujących z nim podczas pobytu dra Trojanowskiego na stypendium na Uniwersytecie Irvine w ramach programu Mobilność Plus finansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego. Eksperyment ma poszukiwać nowych, nieznanych dotąd cząstek, które mogą powstawać w zderzeniach protonów, na przykład w punkcie zderzenia w detektorze ATLAS. Naukowcy spodziewają się, że mogą one istnieć, ale nie zostały dotąd zarejestrowane ze względu na ich słabe oddziaływanie z materią detektora. Cząstki takie – jeśli są odpowiednio lekkie, jeśli powstają dość rzadko i na dodatek lecą wzdłuż osi wiązki zderzających się protonów, mogły dotychczas umykać uwadze eksperymentatorów – wyjaśnia dr Trojanowski (NCBJ; przebywający obecnie na stażu doktorskim na Uniwersytecie w Sheffield). Trudno byłoby je na przykład zobaczyć jako wyraźny sygnał brakującej energii w bilansie energetycznym produktów zderzenia. Szansą na ich ewentualne wykrycie jest ustawienie detektora w pewnej odległości od punktu produkcji i próba zarejestrowania oczekiwanych produktów rozpadów. Warunkiem powodzenia takiego scenariusza jest, by masa poszukiwanych cząstek była większa niż łączna masa najlżejszych produktów ewentualnego rozpadu – na przykłada pary elektron-pozyton.
      Zaproponowany i zaaprobowany właśnie przez CERN eksperyment FASER ma być ulokowany ok. pół kilometra od detektora ATLAS w tunelu serwisowym, który zbiega w kierunku tunelu LHC. Układ będzie składał się ze scyntylatorów, magnesów, detektorów śladu i kalorymetru mierzącego energię produktów, jeśli rzeczywiście dojdzie do poszukiwanego rozpadu. Całość ma mieć długość kilku metrów i częściowo składać się z układów zapasowych przekazanych przez funkcjonujące już eksperymenty LHC – tłumaczy dr Trojanowski. Największą inwestycją będzie zamówienie w CERN odpowiednich magnesów. Większość wydatków mają pokryć dwie amerykańskie fundacje: Simons i Heising-Simons.
      W projekt – poza czwórką pomysłodawców – jest obecnie zaangażowanych ponad dwudziestu uczonych ze Szwajcarii, USA i innych krajów. Harmonogram zaakceptowany przez CERN przewiduje, że prace instalacyjne zostaną wykonane w czasie kolejnej dużej przerwy w pracy LHC, a zbieranie danych rozpocznie się w cyklu badawczym LHC zaplanowanym na lata 2021-2023.
      Naukowcy od lat intensywnie poszukują nowych, nieznanych dotąd postaci materii. Obserwacje astronomiczne dostarczają trudnych do podważenia argumentów, że we Wszechświecie istnieje nieznana nam dotąd materia, która z atomami, z których składamy się my oraz wszystko co znamy, oddziałuje głównie siłami grawitacji. Mimo iż obliczenia wskazują, że tej nieznanej "ciemnej" materii jest we Wszechświecie kilkakrotnie więcej niż materii "normalnej", nie udało się jej wytworzyć lub zaobserwować jej składników w naszych laboratoriach. Proponowany eksperyment jest jedną z wielu propozycji inspirowanych tą zagadką. Cząstki, których poszukiwał będzie FASER, mogłyby być pierwszym elementem na drodze do jej rozwikłania. Ewentualne negatywne wyniki także wzbogacą naszą wiedzę i wykluczą niektóre teoretyczne koncepcje.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CERN zawiesił współpracę z profesorem fizyki teoretycznej Alessandro Strumią. Także jego macierzysta uczelnia, Uniwersytet w Pizie oraz Europejska Rada ds. Badań Naukowych, która finansuje pracę Strumii, zapowiedziały przeprowadzenie śledztwa.
      Alessandro Strumia naraził się... swoimi poglądami na temat płci.
      Uczony wystąpił 28 września podczas zorganizowanego przez CERN pierwszego Workshop on High Energy Theory and Gender. Widownia składała się głównie z kobiet. Po wystąpieniu na uczonego posypały się oskarżenia, że jest seksistą. Dwa dni później CERN oświadczył, że ze skutkiem natychmiastowym zawiesza współpracę ze Strumią i rozpoczyna śledztwo ws. wystąpienia. W tym samym oświadczeniu przedstawiciele CERN stwierdzili, że Strumia naruszył kodeks etyczny organizacji, która jest jest miejscem, gdzie każdy jest mile widziany i każdy, niezależnie od pochodzenia, wyznawanych poglądów, płci czy orientacji seksualnej, ma takie same szanse. Z kolei rektor Uniwersytetu w Pizie stwierdził, że dostępne w sieci slajdy z wystąpienia Strumii naruszają fundamentalne wartości uniwersytetu.
      Sam uczony w rozmowie z prasą powiedział: mam nadzieję, że CERN będzie chciał ze mną porozmawiać i poinformuje mnie, co nielegalnego było w moim wystąpieniu. Odnosząc się do krytyki w mediach społecznościowych Strumia stwierdził: wierzę, że uczciwa większość ludzi zrozumie, że taka jest prawda i że warto było narazić się na lincz, ale nie poddać się cenzurze.
      Co takiego zrobił Strumia? Swoje wystąpienie zaczął od przedstawienia zarzutów, zgodnie z którymi kobiety w nauce są dyskryminowane. Następnie stwierdził, że fizyka nie zależy od narodowości, rasy czy płci, ale jest otwarta po prostu dla ludzi dobrych w tym, co robią. W rzeczywistości fizyka była międzynarodowa, gdy kultura służyła nacjonalizmom, czytamy na jednym e slajdów. Przedstawił też wykresy, z których wynika, że na na wielu polach, takich edukacja, psychologa, nauki humanistyczne czy medycyna istnieje wyraźna przewaga liczby kobiet. W takich dziedzinach jak nauki ścisłe, budownictwo, praca w straży pożarnej czy w kopalniach, widzimy wyraźną przewagę mężczyzn.
      Także w CERNie kobiety stanowią mniejszość wśród fizyków czy techników. Ale, zdaniem Strumii, nie jest to przejaw dyskryminacji. Naukowiec przypomniał bowiem paradoks równości płciowej, o którym pisaliśmy. Okazuje się bowiem, że im bardziej w danym kraju przykłada się uwagę do równości płci, tym mniej kobiet studiuje nauki ścisłe. Przedstawił też wyliczenia, z których wynika, że kobiety nie są dyskryminowane jeśli chodzi o liczbę cytowań. Ponadto z jego wyliczeń wynikało, że jeśli chodzi o zatrudnianie kobiet na stanowiskach naukowych, to kobiecie-naukowiec wystarczy mniejsza liczba cytowań, by znaleźć zatrudnienie. Posłużył się tutaj własnym przykładem. Podczas gdy włoski Narodowy Instytut Fizyki Nuklearnej zatrudnił panią Silvię Penati (2130 cytowań) czy panią Annę Ceresole (3231 cytowań), to nie zatrudnił Alessandro Strumii (30785 cytowań).
      Dokonał też obliczeń dla całego CERN-u, z których wynika, że przeciętny zatrudniony w nim mężczyzna ma na swoim koncie 1464 cytowania, a pierwszy artykuł w prasie specjalistycznej opublikował w 2008 roku, natomiast przeciętna kobieta ma na koncie 853 cytowania, a pierwszy artykuł opublikowała w 2010 roku.
      Największe oburzenie zebranych wywołały jednak słowa, przytaczane często przez prasę, że fizykę wynaleźli i stworzyli mężczyźni. Natomiast kobiety, takie jak Curie zostały powitane w świecie fizycznym po tym, jak pokazały, co potrafią.
      Strumia posunął się jednak jeszcze dalej. Stwierdził, że to mężczyźni są obecnie dyskryminowani w nauce. Na poparcie tej tezy przytoczył kilka tytułów prasowych, takich jak Oxford University extends exam times for women's benefit, Italy: free or cheaper university for STEM female students, czy też Scholarships for women. Przypomniał też wciąż obowiązującą międzynarodową Konwencję o Pracy Przymusowej, która przewiduje, że do pracy przymusowej mogą być kierowani tylko mężczyźni.
      Pod koniec swojego wystąpienia Strumia stwierdził, że osoby kończące studia na wydziale fizyki są osobami z górnego przedziału IQ. Mężczyźni mają IQ podobne do kobiet, ale standardowe odchylenie jest u nich o około 15% większe, czytamy na slajdzie Strumii. Oznacza to, że wśród mężczyzn jest więcej osób bardzo inteligentnych, ale też więcej osób bardzo mało inteligentnych. Przypomniał też nazwiska kilku mężczyzn, którzy stracili pracę za poglądy oraz, że w 2016 roku CERN został bezpodstawnie oskarżony przez działaczy LGBT o homofobię.
      Na ostatnim slajdzie Strumii czytamy: Fizyka nie jest seksistowska i skierowana przeciwko kobietom. Jednak prawda nie jest ważna, gdyż stała się ona częścią wojny, która przyszła do nas z zewnątrz. Nie jest jasne, kto w tej wojnie wygra. PS. Wiele osób mówiło mi, bym nie wygłaszał tego wystąpienia, gdyż jest to niebezpieczne. Jako student napisałem, że że supersymetria w skali elektrosłabej nie działa. I przeżyłem. Mam nadzieję, że znowu się zobaczymy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Użytkownicy smartfonów, którym zależy na dłuższej pracy na pojedynczym ładowaniu baterii powinni zastanowić się nad częstszym używaniem... płatnych wersji oprogramowania. Abhinav Pathak i Charlie Hu z Purdue University oraz Ming Zhang z Microsoft Research odkryli, że bezpłatne aplikacje zużywają niezwykle dużo energii.
      Badacze stworzyli program Eprof, który bardzo szczegółowo opisuje zużycie energii przez urządzenie podczas używania różnych aplikacji. Następnie sprawdzili za jego pomocą smartfony z systemami Android i Windows Phone. Okazało się, że bezpłatne oprogramowanie, takie jak np. Angry Birds, Free Chess, Facebook i NYTimes na potrzeby swoich zasadniczych funkcji wykorzystuje jedynie 10-30 procent zużywanej energii. Na przykład Angry Birds używają tylko 20% wykorzystywanej energii na obsługę gry, a 45% jest zużywane na określenie lokalizacji użytkownika przez GPS oraz ładowanie odpowiednich reklam przez 3G. Łącze 3G pozostaje otwarte przez około 10 sekund po zakończeniu transmisji, co zużywa kolejne 28% energii.
      Eprof wykazał też, że takie marnotrawstwo energii jest związane z błędami niechlujnie napisanym kodem do zarabiania na bezpłatnych programach.
      Badacze udowodnili, że wilk może być syty i owca cała - poprawili kod w czterech programach, zmniejszając konsumpcję energii od 20 do 65 procent.
×
×
  • Create New...