Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Papryczki chilii niszczą mitochondria komórek rakowych

Rekomendowane odpowiedzi

Naukowcy odkryli sposób, w jaki składnik pikantnych papryczek, kapsaicyna, zabija komórki nowotworowe. Okazało się, że związek ten atakuje centra energetyczne komórki, czyli mitochondria. Poczyniwszy takie spostrzeżenia, badacze zaczęli się zastanawiać, czy nie można by opracować działających na podobnej zasadzie leków (chemioterapeutyków). Wierzą, że udało się natrafić na piętę achillesową nowotworów.

Kapsaicynę testowano na hodowlach komórek ludzkich nowotworów płuc i trzustki.

Szef badań, dr Timothy Bates, podkreśla, że biochemia mitochondriów komórek nowotworowych jest zupełnie inna niż w zdrowych komórkach. Stężenie kapsaicyny wywołujące apoptozę w komórkach rakowych nie zadziała w ten sam sposób na te drugie.

Fakt, że kapsaicyna i inne waniloidy są już składnikami diety, uspokaja, iż można je bezpiecznie spożywać. Kapsaicyna jest, na przykład, stosowana w terapii zmęczenia mięśni oraz łuszczycy. Warto się więc zastanowić nad zaadaptowaniem miejscowego leczenia za ich pośrednictwem do określonych nowotworów skóry. Możliwe także, że pacjentom onkologicznym lub z tzw. grup ryzyka zalecać się będzie menu z dużą zawartością pikantnych składników [...].

Josephine Querido z brytyjskiego Cancer Research ma jednak sporo wątpliwości. Po pierwsze, uważa, że omawiane badania nie wykazały, iż "napychanie się" chilli pomaga leczyć lub zapobiegać nowotworom. Po drugie, według niej, studium wykazało, że kapsaicyna działa na laboratoryjne kultury komórkowe, a nie na tkanki w żywym organizmie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Komórki nowotworów złośliwych łatwiej niż prawidłowe ulegają mechanicznym deformacjom, co umożliwia im migrację w organizmie. W Instytucie Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie zbadano własności mechaniczne komórek raka prostaty poddanych działaniu najczęściej stosowanych leków antynowotworowych. Zdaniem badaczy, obecne leki można stosować efektywniej i w mniejszych dawkach.
      W przypadku raka kluczowym czynnikiem sprzyjającym powstawaniu przerzutów jest zdolność komórek nowotworowych do ulegania deformacjom mechanicznym. W Instytucie Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie badania nad własnościami mechanicznymi komórek są prowadzone od ćwierć wieku. Najnowsze prace, zrealizowane w kooperacji z Katedrą Biochemii Lekarskiej Collegium Medicum Uniwersytetu Jagiellońskiego (CM UJ), dotyczyły kilku leków obecnie używanych w chemioterapii raka prostaty, a konkretnie ich wpływu na własności mechaniczne komórek nowotworowych. Wyniki napawają optymizmem: wszystko wskazuje na to, że dawki niektórych leków będzie można zmniejszyć bez ryzyka obniżenia skuteczności ich działania.
      Chemioterapia to wyjątkowo brutalny atak nie tylko na komórki nowotworowe pacjenta, ale na wszystkie komórki jego organizmu. Stosując ją lekarze mają nadzieję, że bardziej wrażliwe komórki nowotworu zginą zanim zaczną ginąć komórki zdrowe. W tej sytuacji kluczowego znaczenia nabiera wiedza, jak dobrać lek optymalny w danym przypadku oraz jak ustalić jego minimalną dawkę, która z jednej strony zagwarantuje skuteczność działania, z drugiej zaś pozwoli zminimalizować negatywne skutki terapii.
      Fizycy z IFJ PAN już w 1999 roku wykazali, że komórki nowotworowe łatwiej się deformują mechanicznie. W praktyce fakt ten oznacza, że z większą efektywnością mogą się przeciskać przez wąskie naczynia układów krwionośnego i/lub limfatycznego.
      O mechanicznych własnościach komórki decydują takie elementy jej cytoszkieletu jak badane przez nas mikrotubule zbudowane z białka tubuliny, filamenty aktynowe z aktyny oraz filamenty pośrednie tworzone z białek typu keratyna czy wimentyna, mówi prof. dr hab. Małgorzata Lekka z Zakładu Badań Mikroukładów Biofizycznych IFJ PAN i uzupełnia: Pomiary biomechaniczne komórek prowadzimy za pomocą mikroskopu sił atomowych. W zależności od potrzeb, możemy sondą słabiej lub mocniej naciskać na komórkę i w ten sposób otrzymujemy odpowiedź mechaniczną pochodzącą od struktur leżących albo przy jej powierzchni, czyli przy błonie komórkowej, albo głębiej, nawet przy jądrze komórkowym. Jednak aby otrzymać informację o skutkach działania leku, musimy ocenić, jaki wkład do własności mechanicznych komórki wnoszą poszczególne rodzaje włókien cytoszkieletu.
      W obecnie raportowanych wynikach krakowscy fizycy przedstawili eksperymenty z użyciem komercyjnie dostępnej linii ludzkich komórek raka prostaty DU145. Linię tę wybrano z uwagi na jej odporność na działanie leków. Wystawione na długotrwały wpływ leków, komórki te po pewnym czasie uodparniają się na działanie leków i nie tylko nie umierają, ale nawet zaczynają się dzielić.
      Skoncentrowaliśmy się na efektach działania trzech często stosowanych leków: winfluniny, kolchicyny i docetakselu. Wszystkie oddziałują na mikrotubule, co jest pożądane z uwagi na fakt, że to właśnie te włókna są istotne przy podziale komórki. Docetaksel stabilizuje mikrotubule, zatem zwiększa też sztywność komórek nowotworu i utrudnia im migrację w organizmie. Pozostałe dwa leki destabilizują mikrotubule, komórki nowotworowe mogą więc migrować, jednak z uwagi na zaburzone funkcje cytoszkieletu nie są w stanie się dzielić, mówi doktorant Andrzej Kubiak, pierwszy autor artykułu opublikowanego na łamach prestiżowego czasopisma naukowego Nanoscale.
      Krakowscy naukowcy analizowali żywotność i własności mechaniczne komórek po 24, 48 i 72 godzinach od poddania ich działaniu leków, przy czym okazało się, że największe zmiany są obserwowane trzy dni od ekspozycji na lek. Badania pozwoliły ustalić dwa stężenia leków: wyższe, które niszczyło komórki, oraz niższe, przy którym komórki co prawda przeżywały, lecz ich własności mechaniczne okazały się być zmienione. Z oczywistych względów szczególnie interesujące było to, co się działo z komórkami w ostatnim z wymienionych przypadków. Precyzyjna interpretacja części wyników wymagała zastosowania szeregu narzędzi, takich jak mikroskop konfokalny czy cytometria przepływowa. Ich użycie było możliwe dzięki współpracy z Instytutem Farmakologii PAN w Krakowie, Zakładem Biologii Komórki na Wydziale Biochemii, Biofizyki i Biotechnologii UJ oraz Uniwersytetem w Mediolanie (Department of Physics, Università degli Studi di Milano).
      Od pewnego czasu wiadomo, że gdy dochodzi do uszkodzeń mikrotubul, część ich funkcji przejmują włókna aktynowe. Połączenie pomiarów własności mechanicznych komórek z obrazami z mikroskopów konfokalnego i fluorescencyjnego pozwoliło nam zaobserwować ten efekt. Byliśmy w stanie dokładnie ustalić obszary w komórce, na które działa dany lek, oraz zrozumieć, jak przebiegają zmiany jego wpływu w czasie, podkreśla doktorant Kubiak.
      Z badań krakowskich fizyków płyną praktyczne wnioski. Na przykład wpływ winfluniny jest wyraźnie widoczny w obszarze jądrowym, lecz jest kompensowany przez włókna aktynowe. W rezultacie komórka pozostaje wystarczająco sztywna, by mogła się dalej namnażać. Z kolei po 48 godzinach od podania leku najlepiej widać efekty działania docetakselu, jednak głównie na obrzeżach komórek. Fakt ten także informuje o wzroście roli włókien aktynowych i oznacza, że terapię należałoby wesprzeć jakimś lekiem działającym właśnie na te włókna.
      Do tej pory niewiele było badań nad skutecznością małych stężeń leków antynowotworowych. My pokazujemy, że zagadnieniem naprawdę warto się zainteresować. Jeśli bowiem dobrze zrozumiemy mechanizmy działania poszczególnych leków, możemy zachować – a niekiedy wręcz zwiększyć – ich dotychczasową skuteczność przy jednoczesnym zmniejszeniu skutków ubocznych chemioterapii. W ten sposób chemioterapia może stać się bardziej przyjazna pacjentowi, co powinno wpłynąć nie tylko na jego zdrowie fizyczne, ale i na nastawienie psychiczne, tak potrzebne w walce z rakiem, podsumowuje prof. Lekka.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wszystkie komórki nowotworowe, a nie tylko ich niewielki podzbiór, są zdolne do wprowadzenia się w tryb powolnego podziału w sytuacji, gdy znajdą się w stanie zagrożenia. Później, gdy zagrożenie minie, mogą się „przebudzić” i powrócić do trybu szybkiego podziału. Dzięki zdolności do wspólnego wprowadzania się w stan uśpienia komórki nowotworowe mogą przetrwać poszczególne etapy chemioterapii i zyskać oporność na kolejne jej etapy.
      Komórki guza wykorzystują więc diapauzę czyli wywoływany czynnikami zewnętrznymi, ale sterowany wewnętrznie, przejściowy stan zahamowania rozwoju. O tym, że komórki nowotworowe mogą korzystać z diapauzy poinformowali właśnie naukowcy z Princess Margaret Cancer Center oraz University of Toronto. Ich artykuł można przeczytać na łamach Cell.
      Wykorzystaliśmy techniki oznaczania komórek oraz modelowania matematycznego na pobranych od pacjenta komórkach raka jelita grubego. Chcieliśmy w ten sposób zidentyfikować i scharakteryzować stany, w których znajdują się komórki w reakcji na chemioterapię (DTP, drug-tolerant persister). W guzach, które weszły w stan DTP nie stwierdziliśmy spadku złożoności klonalnej, a po zaprzestaniu leczenia guzy te podjęły swoje zwykłe działanie, napisali autorzy badań. Dodali, że uzyskane przez nich dane pasują do matematycznego modelu przewidującego, że wszystkie komórki nowotworowe, a nie tylko niektóre małe subpopulacje, są zdolne do wejścia w DTP.
      W ramach prowadzonych badań zespół pod kierunkiem Catherine O'Brien i Miguela Ramalho-Santosa traktował chemioterapeutykami ludzkie komórki raka jelita grubego. Okazało się, że wszystkie komórki weszły w stan powolnego rozwoju, w którym przestały się dzielić i wymagały niewiele składników odżywczych. Dopóki na szalce Petriego znajdowały się chemioterapeutyki, dopóty komórki nowotworowe pozostawały w stanie, który naukowcy nazwali „stanem DTP podobnym do diapauzy”.
      Zwykle diapauza, którą wykorzystuje ponad 100 gatunków ssaków, służy ochronie rozwijającego się płodu w warunkach znacznej zmienności środowiskowej. Gdy panują np. zbyt wysokie lub zbyt niskie temperatury czy brakuje żywności, rozwój embrionu zostaje w dużej mierze wstrzymany, w oczekiwaniu na poprawienie się warunków. Kanadyjscy naukowcy informują teraz, że komórki nowotworowe znajdujące się w stanie DTP wykazują niezwykłe podobieństwa transkrypcyjne i funkcjonalne do stanu diapauzy.
      Okazuje się, że komórki nowotworowe potrafią wykorzystać ten ewolucyjny mechanizm przetrwania, mimo że dotychczas wydawało się, iż ludzie utracili go w wyniku ewolucji, mówi O'Brien. Uczona, która jest chirurgiem specjalizującym się w nowotworach układu pokarmowego, wpadła na pomysł swoich badań przed trzema laty, gdy przypomniała sobie wykład na temat komórkowych mechanizmów umożliwiających przetrwanie embrionu myszy w niekorzystnych warunkach. Gdy go słuchałam, wpadła mi do głowy myśl, żeby zbadać, czy komórki nowotworowe mogą wykorzystywać taki mechanizm do przetrwania chemioterapii, mówi.
      Uczona skontaktowała się z Miguelem Ramalho-Santosem, autorem wspomnianego wykładu, i porównała profile ekspresji genów w powoli rozwijających się komórkach nowotworu znajdujących się w stanie DTP w wyniku chemioterapii z ekspresją genów mysich embrionów w stanie diapauzy. Okazało się, że profile te są do siebie uderzająco podobne.
      Podobnie jak w przypadku embrionów, komórki nowotworowe w DTP potrzebowały aktywowania procesu autofagii. W jego wyniku komórka może „pożreć” własne proteiny i inne elementy by przetrwać, gdy brakuje innych źródeł energii.
      O'Brien przetestowała niewielką molekułę blokującą autofagię i wówczas komórki nowotworowe nie przeżyły. Zostały zabite przez chemioterapeutyki. To daje nam unikatową szansę. Powinniśmy zaatakować komórki nowotworowe gdy znajdują się w tym spowolnionym okresie, zanim nabędą genetycznej oporności na leki. To nowy sposób myślenia o oporności na chemioterapię i o jej pokonaniu, dodaje uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy opracowali przenośne urządzenie (w kształcie papryczki chili), które pozwala szybko i tanio określić zawartość kapsaicyny w papryczkach chili. Wyniki badań zespołu Warakorna Limbuta z Prince of Songkla University ukazały się właśnie w piśmie ACS Applied Nano Materials.
      Papryczki chili są popularnym składnikiem dań na całym świecie. Mają pikantny smak, bo zawierają kapsaicynę - alkaloid o licznych właściwościach prozdrowotnych (działaniu przeciwutleniającym, przeciwzapalnym czy antynowotworowym). Nic więc dziwnego, że zapotrzebowanie na kapasaicynę - do celów spożywczych i farmaceutycznych - rośnie.
      Mając to na uwadze, Limbut i inni chcieli opracować prostą, dokładną i tanią metodę określania zawartości kapsaicyny w papryczkach i próbkach pokarmu. Inne metody, które miały na to pozwalać, były bowiem skomplikowane, czasochłonne lub wymagały drogiego sprzętu pokaźnych rozmiarów.
      Tajlandzcy naukowcy opracowali przenośne urządzenie w kształcie niewielkiej papryczki, które można podłączyć do smartfona, by wyświetlić wyniki. W papierowym czujniku elektrochemicznym wykorzystano nanopłytki grafenu dopowanego azotem (ang. N-doped graphene nanoplatelets, GrNPs); w strukturę grafenu wprowadzono atomy azotu, by poprawić przewodnictwo elektryczne.
      Po zoptymalizowaniu czujnika zespół wykorzystał go do określenia zawartości alkaloidu w 6 próbkach suszonej chili. Papryczki dodawano do roztworu etanolu i wytrząsano. Później roztwór wkrapiano na czujnik. Okazało się, że urządzenie dokładnie mierzyło stężenia kapsaicyny rzędu 7,5-90 μM. Granica wykrywalności (ang. limit of detection) to 0,37 μM.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Żelazne nanodruciki z lekami można doprowadzać do zmian nowotworowych za pomocą zewnętrznego pola magnetycznego. Później wystarczy aktywować 3-elementowy proces zabijania zmienionych chorobowo komórek.
      Nad rozwiązaniem pracowali m.in. naukowcy z Uniwersytetu Nauki i Techniki Króla Abdullaha (KAUST).
      Żelazo jest pierwiastkiem niezbędnym do życia (zarówno dla ludzi, jak i dla zwierząt). Ten pierwiastek śladowy wchodzi w skład białek i enzymów, np. hemoglobiny czy enzymów cyklu Krebsa. Jak zauważa Jürgen Kosel z KAUST, dzięki cechom magnetycznym nanocząstki tlenku żelaza znalazły zastosowanie jako środki kontrastowe w obrazowaniu techniką rezonansu magnetycznego (MRI).
      Materiały zawierające żelazo są biokompatybilne. Za pomocą nieszkodliwego pola magnetycznego możemy je transportować i koncentrować w wybranym obszarze, obracać lub wprawiać w drgania, tak postąpiliśmy w naszym studium, a także wykrywać za pomocą MRI - opowiada Aldo Martínez-Banderas.
      Przykładając pole magnetyczne o niskiej mocy, zespół wprawiał nanodruciki w drgania; zjawisko to prowadziło do powstawania otworów w błonie komórkowej.
      Druciki, w których rdzeń z żelaza jest powleczony tlenkiem żelaza, świetnie absorbują podczerwień i się podgrzewają. Ponieważ światło o tej długości penetruje w głąb tkanek, nanodruciki można podgrzewać laserami skierowanymi w miejsce guza. Wykazano, że wydajność konwersji fototermicznej przekraczała 80%, co przekładało się na dużą wewnątrzkomórkową dawkę ciepła.
      Za pomocą wrażliwych na pH łączników do nanodrucików rdzeń/otoczka "mocowano" cytostatyk doksorubicynę. Jako że środowisko guza jest zazwyczaj bardziej kwaśne niż zdrowa tkanka, łącznik wybiórczo rozkłada się w lub w pobliżu komórek nowotworowych, uwalniając lek dokładnie tam, gdzie jest potrzebny. Terapia łączona skutkowała niemal całkowitą ablacją komórek nowotworowych i była skuteczniejsza niż pojedyncze terapie - podkreśla Martínez-Banderas.
      [...] Możliwości żelaznych nanomateriałów sprawiają, że wydają się one bardzo obiecujące, jeśli chodzi o tworzenie biomedycznych nanorobotów - podsumowuje Kosel.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Testy tysięcy nieonkologicznych leków (substancji leczniczych), które przeprowadzono na 578 liniach ludzkich komórek nowotworowych, doprowadziły do nieoczekiwanego odkrycia: niemal 50 z nich miało właściwości przeciwnowotworowe. Były wśród nich leki do terapii cukrzycy, uzależnienia od alkoholu, a nawet zapalenia stawów u psów.
      Zaskakujące odkrycie zespołu z MIT-u i Uniwersytetu Harvarda (Broad Institute) oraz Dana-Farber Cancer Institute pomogło też zidentyfikować nowe mechanizmy działania i cele dla leków.
      Myśleliśmy, że będziemy mieli szczęście, jeśli znajdziemy choć jedną substancję o właściwościach przeciwnowotworowych, a ku swemu zaskoczeniu wykryliśmy ich tak wiele - podkreśla prof. Todd Golub.
      Wyniki badań ukazały się w piśmie Nature Cancer. To największe jak dotąd studium z wykorzystaniem Drug Repurposing Hub; na zbiór ten składa się ponad 6000 leków i substancji leczniczych, które albo zostały zatwierdzone przez FDA, albo okazały się bezpieczne w czasie testów klinicznych (w okresie prowadzenia badań Hub składał się z 4518 leków).
      Naukowcy testowali wszystkie substancje z Drug Repurposing Hub na 578 liniach ludzkich komórek nowotworowych z Cancer Cell Line Encyclopedia (CCLE). Naukowcy uciekli się do genetycznego metkowania (DNA barcoding) metodą PRISM; opracowano ją w laboratorium Goluba. Dzięki temu można było badać kilka linii naraz, przyspieszając eksperyment.
      Każdą większą pulę metkowanych komórek wystawiano na oddziaływanie pojedynczej substancji z Drug Repurposing Hub i mierzono przeżywalność komórek nowotworowych.
      W ten sposób znaleziono niemal 50 nieprzeciwnowotworowych leków, w tym takich, które pierwotnie opracowano do obniżania poziomu cholesterolu lub zmniejszania stanu zapalnego, zabijających pewne komórki nowotworowe (nie szkodziły one przy tym innym komórkom).
      Niektóre związki uśmiercały komórki nowotworowe w nieoczekiwany sposób. Większość leków przeciwnowotworowych działa, blokując białka, my zaś odkryliśmy substancje, które działają za pośrednictwem innych mechanizmów - opowiada Steven Corsello. Część nie hamuje białek, ale je aktywuje albo stabilizuje interakcje białko-białko. Zauważono np., że prawie 12 nieonkologicznych leków zabija komórki nowotworowe, w których zachodzi ekspresja białka PDE3A, stabilizując interakcję między PDE3A a innym białkiem SLFN12.
      Większość nieonkologicznych leków uśmiercających komórki nowotworowe działała za pośrednictwem nieznanych celów molekularnych. Przeciwzapalna tepoksalina, którą opracowano z myślą o ludziach, ale później dopuszczono do leczenia zapalenia stawów u psów, zabijała komórki nowotworowe, "uderzając" w nieznany cel w komórkach z nadmierną ekspresją białka MDR1 (glikoproteina P jest markerem oporności wielolekowej).
      Ostatecznie naukowcy potrafili przewidzieć, czy dany lek może zabić jakąś linię komórkową, przyglądając się jej cechom genetycznym, takim jak mutacje czy poziom metylacji, zapisanym w bazie CCLE. To zaś oznacza, że pewnego dnia cechy te mogą zostać wykorzystane jako biomarkery do identyfikacji pacjentów, którzy z najwyższym prawdopodobieństwem skorzystają z jakichś leków. Zauważano np., że stosowany w leczeniu alkoholizmu disulfiram zabijał linie komórkowe z mutacjami powodującymi ubytek metalotionein (MT). Związki zawierające wanad, które pierwotnie opracowano do terapii cukrzycy, działały z kolei na komórki nowotworowe z ekspresją transportera siarczanu SLC26A2.
      Zespół chciałby przetestować związki z Drug Repurposing Hub na większej liczbie linii komórkowych i rozbudować sam Hub. Akademicy podkreślają, że zdobyte dotąd dane będą dalej analizowane.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...