Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Delta-12-prostaglandyna J3 (D12-PGJ3), związek pozyskiwany z kwasu eikozapentaenowego, czyli kwasu omega-3 występującego w rybach, zabija w mysiej śledzionie i szpiku kostnym komórki macierzyste przewlekłej białaczki szpikowej (CML).

Przeszłe badania nad kwasami tłuszczowymi zademonstrowały ich korzystny wpływ na układ sercowo-naczyniowy oraz rozwój mózgu, zwłaszcza u niemowląt, ale my wykazaliśmy, że niektóre metabolity kwasów omega-3 mają zdolność wybiórczego uśmiercania u myszy komórek wywołujących białaczkę. Istotne jest to, że myszy były całkowicie wyleczone i nie następowały nawroty choroby - zaznacza prof. Sandeep Prabhu z Uniwersytetu Stanowego Pensylwanii.

D12-PGJ3 aktywuje w komórkach macierzystych białaczki gen białka p53, czynnika transkrypcyjnego o własnościach supresora nowotworowego, uruchamiając w ten sposób program apoptozy. p53 [...] reguluje odpowiedź na uszkodzenia DNA i podtrzymuje stabilność genomu.

Uśmiercenie komórek macierzystych białaczki jest bardzo ważne, ponieważ mogą się one dzielić, dając więcej komórek nowotworowych/macierzystych. Obecne leki na przewlekłą białaczkę szpikową nie prowadzą do całkowitego wyleczenia, ponieważ nie obierają na cel komórek macierzystych, tylko utrzymują liczbę komórek nowotworowych na niskim poziomie - wyjaśnia prof. Robert Paulson, współautor badań. Pacjenci muszą stale zażywać leki. Jeśli przestaną, choroba nawraca, ponieważ komórki macierzyste białaczki są lekooporne.

Podczas eksperymentów codziennie przez tydzień Amerykanie wstrzykiwali każdej z myszy 600 nanogramów D12-PGJ3. Badania pokazały, że gryzonie zostały w pełni wyleczone. Parametry krwi były prawidłowe, rozmiary śledziony wróciły do normy, nie dochodziło do nawrotów białaczki. Zdecydowano się na testowanie właśnie D12-PGJ3, ponieważ wywoływał on najmniejszą liczbę skutków ubocznych.

Akademicy zamierzają sprawdzić, czy D12-PGJ3 można wykorzystać w terminalnej fazie CML. Obecnie nie ma leków, które skutkowałyby po podaniu na tym etapie choroby.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wyjście zwierząt z wody na ląd to jedno z najważniejszych wydarzeń w ewolucji. Kluczem do zrozumienia, jak do tego doszło, jest odkrycie, kiedy i jak wyewoluowały płuca i kończyny. Wykazaliśmy, że biologiczne podstawy do ich ewolucji istniały na długo przed tym, zanim pierwsze zwierzę wyszło na brzeg, mówi profesor Guojie Zhang z Uniwersytetu w Kopenhadze.
      Nie od dzisiaj wiemy, że człowiek oraz inne kręgowce wyewoluowały z ryb. Przed około 370 milionami lat na ląd zaczęły wychodzić pierwsze prymitywne czworonogi, ryby, które zmieniły płetwy na kończyny i były w stanie oddychać powietrzem atmosferycznym. Okazuje się jednak, że zmiana płetw na kończyny i umiejętność oddychania poza wodą są znacznie starsze.
      Naukowcy z Uniwersytetu w Kopenhadze przeprowadzili badania genetyczne, które dowiodły, że już 50 milionów przed wyjściem czworonogów na ląd istniał kod genetyczny umożliwiający zmianę płetw na łapy i pozwalający na oddychanie powietrzem atmosferycznym. Co więcej, geny te wciąż istnieją u ludzi i wielopłetwcowatych. Badania, opublikowane na łamach pisma Cell, zmieniają tradycyjne spojrzenie na ciąg wydarzeń, które doprowadziły do pojawienia się pierwszych zwierząt lądowych.
      Uczeni od pewnego czasu podejrzewają, że płetwy piersiowe wielopłetwcowatych, ryb potrafiących poruszać się po lądzie podobnie jak czworonogi, odpowiadają płetwom, jakie posiadał nasz wspólny przodek z rybami. Teraz, dzięki mapowaniu genomu wykonanemu przez uczonych z Kopenhagi, dowiadujemy się, że staw łączący metapterygium z radialiami płetw jest homologiem – czyli ma wspólne pochodzenie ewolucyjne – stawu łokciowego u człowieka. Sekwencja DNA kontrolująca rozwój stawu łokciowego H. sapiens istniała już u wspólnego przodka prymitywnych ryb i kręgowców lądowych i wciąż u nich istnieje. Jednak w pewnym momencie ewolucji sekwencję tę utraciły ryby z podgromady doskonałokształtnych.
      Wielopłetwcowate i niektóre inne prymitywne ryby posiadają parę płuc przypominających ludzkie płuca. Właśnie przeprowadzone badania wykazały, że ich płuca funkcjonują podobnie jak płuca niszczuki krokodylej i dochodzi u nich do ekspresji tych samych genów co w ludzkich płucach.
      Jednocześnie wykazano, że w tkance płuc i pęcherza pławnego mamy do czynienia z bardzo podobną ekspresją genów, co wskazuje, że są organami homologicznymi. Tak zresztą uważał już Darwin. Jednak o ile Darwin sądził, że pęcherz pławny przekształcił się w płuca, to obecne badania sugerują, że wyewoluował on z płuc. Ich autorzy sądzą, że nasi wcześni rybi przodkowie posiadali prymitywne płuca. W toku ewolucji część ryb zachowała te płuca, co pozwoliło im z czasem wyjść na ląd i przyczyniło się do pojawienia się czworonogów, a u części ryb z płuc powstał pęcherz pławny, prowadząc do powstania doskonałokształtnych.
      Badania te pokazują, skąd wzięły się różne organy naszego ciała i ich funkcję są zapisane w kodzie genetycznym. Niektóre z funkcji związanych z płucami i kończynami nie pojawiły się w czasie, gdy pierwsze zwierzęta wyszły na ląd, ale były zakodowane w genomie na długo zanim pierwsza ryba zaczęła prowadzić lądowy tryb życia. Co ciekawe, te sekwencje genetyczne są wciąż obecne w rybich „żywych skamielinach”, dzięki czemu możemy je badać, mówi Guojie Zhang.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W głębinach oceanu pozbawionych światła słonecznego zespół naukowców odkrył jeden z najczarniejszych znanych materiałów: skórę pewnych ryb. Te ultraczarne ryby pochłaniają światło tak skutecznie, że nawet w jaskrawym świetle wyglądają jak kontury bez rozróżnialnych cech. W ciemnościach głębin, także otoczone bioluminescencyjnym światłem, ryby te dosłownie znikają.
      Szesnastego lipca w piśmie Current Biology ukazał się artykuł zespołu Karen Osborn z Narodowego Muzeum Historii Naturalnej (Smithsonian Institution) i Sönke Johnsena z Duke University. Naukowcy podkreślają, że ultraczarna skóra wyewoluowała u 16 gatunków głębokowodnych ryb. Dane histologiczne sugerują, że niski współczynnik odbicia jest pośredniczony przez ciągłą warstwę gęsto upakowanych melanosomów tuż pod błoną podstawną naskórka. W warstwie tej brakuje niezabarwionych przerw między melonoforami, które występują u innych ryb o ciemnym ubarwieniu.
      Jak podkreślają naukowcy, przekłada się to na wysoką absorpcję. Odbija się zaledwie 0,5% światła. Naśladowanie tej strategii pozwoliłoby inżynierom opracować tańsze, giętkie i bardziej wytrzymałe ultraczarne materiały do zastosowań w technologiach optycznych, np. teleskopach, czy do kamuflażu.
      Osborn zainteresowała się rybią skórą, po tym jak spróbowała sfotografować uderzająco czarne, złowione włókiem dennym ryby. Mimo nowoczesnego sprzętu nie mogła uwiecznić  żadnych szczegółów. Nie miało znaczenia, jak się ustawiło aparat czy oświetlenie - pochłaniane było całe światło.
      Pomiary w laboratorium pokazały, czemu aparaty sobie nie radziły. Wiele z ryb pochłaniało ponad 99,5% światła, które padało na ich powierzchnię. W głębokim, ciemnym oceanie, gdzie pojedynczy foton wystarczy, by przyciągnąć czyjąś uwagę, taka intensywna czerń zwiększa szansę ryb na przeżycie.
      Ponieważ światło słoneczne nie dociera na większe głębokości, gros istot z głębin produkuje własne światło (zjawisko to nazywamy bioluminescencją). Można w ten sposób zwrócić uwagę płci przeciwnej, rozproszyć drapieżniki czy zwabić ofiarę. Można też zdemaskować zwierzęta znajdujące się nieopodal, chyba że mają one dobry kamuflaż. Jeśli chcesz się wtopić w nieskończoną czerń otoczenia, pochłonięcie wszystkich docierających do ciebie fotonów wydaje się wspaniałą metodą - podkreśla Osborn.
      Naukowcy zauważyli, że kształt, rozmiar i układ melonosomów powodują, że praktycznie całe światło, jakiego same bezpośrednio nie absorbują, jest jest kierowane do sąsiednich melanosomów (wydłuża się ścieżka optyczna, a więc i pochłanianie promieniowania przez melaninę). Niski współczynnik odbicia to pokłosie rozpraszania światła na boki w obrębie warstwy. W gruncie rzeczy tworzą one superwydajną, supercienką pułapkę świetlną. Światło się nie odbija, nie przechodzi na drugą stronę. Wchodzi w tę warstwę i przepada.
      Jak wyliczono, spośród 18 uwzględnionych w badaniach gatunków przy fali długości 480 nm (to wartość typowa m.in. dla oceanicznej bioluminescencji) 16 prezentowało współczynniki odbicia poniżej 0,5%, a 2 pozostałe gatunki (Chauliodus macouni i Cyclothone acclinidens) poniżej 0,6%.
      Z wyjątkiem C. acclinidens, Ch. macouni i Sigmops elongatus, ultraczarna skóra pokrywała większość ciała, co sugeruje, że ma ona zmniejszać odbicie światła z bioluminescencji. Generalnie badane ryby były średnich rozmiarów, dlatego presja, by ukryć się zarówno przed drapieżnikami, jak i ofiarami, mogła być ważną siłą napędzającą ewolucję ultarczarnej skóry.
      Naukowcy podejrzewają też, że ultraciemna skóra u drapieżników polujących z zasadzki, np. Oneirodes sp., Eustomias spp. i Astronesthes micropogon, służy do zmniejszenia współczynnika odbicia własnych wabików. Niekiedy ultraczarna skóra znajdowała się tylko w okolicy przewodu pokarmowego, co miałoby służyć ukryciu światła emitowanego przez niedawno spożytą bioluminescencyjną ofiarę. U np. Ch. macouni ultraczarna skóra występowała nad i pod lustrzanym pasem, co sugeruje, że dla rejonów ciała o wysokiej krzywiźnie kamuflaż lustrzany może być mniej skuteczny, dlatego zastąpiono go ultraczernią.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wykorzystywana w średniowieczu mikstura - balsam oczny Balda (ang. Bald's eyesalve) - może znaleźć zastosowanie we współczesnej terapii. Naukowcy z Uniwersytetu w Warwick wykazali, że jest on skuteczny wobec szeregu patogenów Gram-dodatnich i Gram-ujemnych w hodowlach planktonowych, a także wobec 5 bakterii hodowanych w formie biofilmu.
      Bald's eyesalve opisano w staroangielskim (IX-w.) podręczniku medycznym Bald's Leechbook (zwanym także Medicinale Anglicum). Miksturę stosowano na jęczmień - torbielowatą infekcję powieki. Przyrządzano ją z czosnku, dodatkowej rośliny z rodzaju Allium (czosnek), np. cebuli lub pora, wina i krowich kwasów żółciowych. Zgodnie z recepturą, po zmieszaniu, a przed użyciem składniki muszą stać przez 9 nocy w mosiężnym naczyniu.
      Pięć lat temu naukowcy z Uniwersytetu w Nottingham wykorzystali Bald's eyesalve do walki z metycylinoopornym gronkowcem złocistym (MRSA). Opierając się na ich badaniach, zespół z Warwick ustalił, że Bald's eyesalve wykazuje obiecujące działanie antybakteryjne i tylko w niewielkim stopniu szkodzi ludzkim komórkom.
      Mikstura była skuteczna przeciw szeregowi bakterii Gram-dodatnich i Gram-ujemnych w hodowlach planktonowych. Aktywność utrzymywała się także przeciwko 5 bakteriom hodowanym w postaci biofilmu: 1) Acinetobacter baumannii, 2) Stenotrophomonas maltophilia, 3) gronkowcowi złocistemu (Staphylococcus aureus), 4) Staphylococcus epidermidis i 5) Streptococcus pyogenes.
      Bakterie te można znaleźć w biofilmach infekujących cukrzycowe owrzodzenie stopy (tutaj zaś, jak wiadomo, sporym problemem może być lekooporność).
      Jak wyjaśniają naukowcy, w skład balsamu ocznego Balda wchodzi czosnek, a ten zawiera allicynę (fitoncyd o działaniu bakteriobójczym). W ten sposób można by wyjaśnić aktywność mikstury wobec hodowli planktonowych. Sam czosnek nie wykazuje jednak aktywności wobec biofilmów, dlatego antybiofilmowego działania Bald's eyesalve nie da się przypisać pojedynczemu składnikowi. By osiągnąć pełną aktywność, konieczne jest ich połączenie.
      Wykazaliśmy, że średniowieczna mikstura przygotowywana z cebuli, wina i kwasów żółciowych może zabić całą gamę problematycznych bakterii, hodowanych zarówno w formie planktonowej, jak i biofilmu. Ponieważ mikstura nie powoduje większych uszkodzeń ludzkich komórek i nie szkodzi myszom, potencjalnie moglibyśmy opracować z tego środka bezpieczny i skuteczny lek antybakteryjny - podkreśla dr Freya Harrison.
      Większość wykorzystywanych współcześnie antybiotyków pochodzi od naturalnych substancji, ale nasze badania unaoczniają, że pod kątem terapii zakażeń związanych z biofilmem należy eksplorować nie tylko pojedyncze związki, ale i mieszaniny naturalnych produktów.
      Szczegółowe wyniki badań opublikowano w piśmie Scientific Reports.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy doszli do tego, w jaki sposób umierające komórki, które przechodzą programowaną śmierć, czyli apoptozę, zapobiegają niebezpiecznym reakcjom immunologicznym. Zespół z German Cancer Research Center (DKFZ) zidentyfikował na komórkach odpornościowych gryzoni receptor, który aktywuje ochronny mechanizm i w ten sposób zapobiega reakcjom autoimmunologicznym.
      W organizmie codziennie umiera ogromna liczba komórek. Układ odpornościowy styka się wtedy z dużą ilością białek, które powinny uruchomić odpowiedź immunologiczną. Wydaje się jednak, że apoptyczne komórki aktywnie hamują układ odpornościowy, po to by nie atakował on własnych tkanek.
      Wiele lat temu zaczęliśmy się zastanawiać, jaki ochronny mechanizm zapobiega reakcjom autoimmunologicznym, gdy komórki układu odpornościowego, takie jak komórki dendrytyczne, pochwytują resztki martwych komórek - opowiada Peter Krammer.
      Ostatnio Krammer i Heiko Weyd znaleźli wraz zespołem odpowiedź na to pytanie. Okazało się, że gdy uruchamiana jest apoptoza, umierająca komórka transportuje na powierzchnię białka z rodziny aneksyn. Aneksyny są dla komórek układu odpornościowego sygnałem stopu i zapobiegają wyzwoleniu odpowiedzi immunologicznej.
      Kevin Bode zidentyfikował białko dektynę-1 (ang. dectin-1) jaki receptor wiążący aneksynę na powierzchni komórek dendrytycznych. Dektyna-1 rozpoznaje aneksyny i uruchamia w komórkach dendrytycznych szlak sygnalizacyjny, który ostatecznie hamuje odpowiedź.
      Myszy, które nie miały dektyny-1 na powierzchni komórek dendrytycznych, wykazywały silniejszą odpowiedź immunologiczną na umierające komórki. Ponadto zwierzęta pozbawione dektyny-1 rozwinęły w starszym wieku objawy chorób autoimmunologicznych.
      Zakładamy, że organizm ma też inne ochronne opcje. To dlatego nieobecność dektyny-1 nie jest widoczna aż do późniejszych etapów życia - wyjaśnia Bode.
      Co ciekawe, dektyna-1 spełnia podwójną rolę. W jednym miejscu wiąże aneksyny, w drugim pewne patogeny, a to z kolei wywołuje odpowiedź immunologiczną. W ten sposób odkryliśmy kluczowy immunologiczny punkt kontroli, który w zależności od partnera wiązania albo wyzwala, albo hamuje odpowiedź immunologiczną - podkreśla Krammer.
      Interakcję aneksyn z powierzchni umierających komórek z dektyną-1 na komórkach dendrytycznych wykryto najpierw w szalce Petriego. Później przyszedł czas na badanie zjawisk zachodzących u zwierząt wyposażonych w złożony układ odpornościowy.
      Ważnym elementem szlaku uruchamianego po związaniu aneksyny z dektyną-1 jest oksydaza NADPH typu 2. (ang. NADPH oxidase 2). Ludzie, którzy nie mają tego enzymu, zapadają na choroby autoimmunologiczne. Obecnie ekipa z DKFZ we współpracy z akademikami z Dziecięcego Szpitala w Zurychu oraz Szpitala Uniwersyteckiego w Heidelbergu bada próbki krwi pacjentów pozbawionych oksydazy NADPH typu 2., by znaleźć punkt zaczepienia do opracowania nowych terapii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Lekooporność staje się coraz poważniejszym problemem. Powodujące zakażenia szpitalne pałeczki okrężnicy (Escherichia coli) i pałeczki zapalenia płuc (Klebsiella pneumoniae) stały się oporne na większość antybiotyków. Brakuje nowych substancji, które wykazywałyby aktywność wobec zabezpieczonych zewnętrzną błoną komórkową bakterii Gram-ujemnych. Ostatnio jednak międzynarodowy zespół odkrył peptyd, który atakuje takie bakterie od niespodziewanej strony.
      Od lat 60. naukowcom nie udało się opracować nowej klasy antybiotyków skutecznych w walce z bakteriami Gram-ujemnymi, teraz jednak, z pomocą nowego peptydu, może się to udać - podkreśla prof. Till Schäberle z Uniwersytetu Justusa Liebiga w Gießen.
      Zespół prof. Kim Lewis z Northwestern University skupił się na bakteryjnych symbiontach (Photorhabdus) entomopatogenicznych nicieni. W ten sposób zidentyfikowano nowy antybiotyk - darobaktynę (ang. darobactin).
      Jak napisał w przesłanym nam mailu prof. Schäberle, początkowo darobaktynę wyizolowano z P. temperata HGB1456. Po zidentyfikowaniu genów kodujących biosyntezę, naukowcy zdali sobie jednak sprawę, że do grupy potencjalnych producentów należy zaliczyć o wiele więcej szczepów [Photorhabdus – red.].
      Substancja nie wykazuje cytotoksyczności, a to warunek konieczny dla antybiotyku. Zyskaliśmy już wgląd, w jaki sposób bakteria syntetyzuje tę cząsteczkę. Obecnie pracujemy [...] nad zwiększeniem jej produkcji [w warunkach laboratoryjnych jest ona niewielka] i nad stworzeniem analogów.
      Naukowcy wykazali, że darobaktyna wiąże się z białkiem BamA (ang. β-Barrel assembly machinery protein A), które odgrywa krytyczną rolę w biogenezie białek zewnętrznej błony komórkowej. Powstawanie funkcjonalnej zewnętrznej błony zostaje zaburzone i bakterie giną. Należy odnotować, że nieznany wcześniej słaby punkt jest zlokalizowany na zewnątrz, dzięki czemu pozostaje łatwo dostępny.
      Autorzy artykułu z pisma Nature podkreślają, że darobaktyna dawała świetne efekty w przypadku zakażeń wywoływanych zarówno przez dzikie, jak i antybiotykooporne szczepy E. coli, K. pneumoniae i pałeczki ropy błękitnej (Pseudomonas aeruginosa).
      Zespół uważa, że uzyskane wyniki sugerują, że bakteryjne symbionty zwierząt zawierają antybiotyki, które doskonale nadają się do rozwijania terapeutyków.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...