Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Szczęśliwa rybka zwalcza anemię

Rekomendowane odpowiedzi

Gdy okazało się, że nie ma sposobu na to, by przekonać cierpiące na niedobory żelaza kobiety żyjące w głębi kambodżańskiej dżungli, żeby wrzuciły podczas gotowania do garnka garść opiłków żelaza, Chris Charles z University of Guelph wpadł na genialny w swej prostocie pomysł. Nadał żelazu postać rybki z lokalnej rzeki, która wg tutejszych mieszkańców, przynosi szczęście.

Podczas pobytu w Azji młody Kanadyjczyk współpracował z dwoma naukowcami z kambodżańskiego oddziału International Development Research Centre (IDRC). Ponieważ zespół obcował z najbiedniejszymi z biednych, których nie było stać na czerwone mięso, suplementy żelaza czy zamianę garnków na żelazne, trzeba było zorganizować burzę mózgów. Wiadomo było, że garść ohydnego metalu się nie sprawdzi, musieliśmy więc zaproponować coś bardziej atrakcyjnego. Stanęliśmy przed wyzwaniem z zakresu marketingu społecznego.

Żelazne kółko nie spodobało się kobietom, podobnie zresztą jak kwiat lotosu. Strzałem w dziesiątkę okazała się dopiero rybka z lokalnej rzeki. Panie chętnie wrzucały ją do garnków i w następnych miesiącach poziom żelaza u mieszkańców wioski zaczął się podnosić, odganiając widmo anemii.

Rybki mają od 7,5 do 10 cm. Są więc na tyle małe, by nie przeszkadzały w mieszaniu potrawy, a jednocześnie na tyle duże, by zaspokoić ok. 75% dziennego zapotrzebowania na żelazo. Kanadyjczycy znaleźli rzemieślnika, który wykonuje rybkę za 1,5 dolara. Z dotychczasowych doświadczeń wynika, że pojedyncza sztuka może posłużyć nawet przez 3 lata.

Prosty pomysł pomógł nie tylko Kambodżanom. Dzięki niemu Charles zostanie wkrótce doktorem. Nauczył się też pobierać krew od osoby siedzącej w chybotliwym kanu i zaraził się dengą. A wszystko zaczęło się od niewinnego wyjazdu wakacyjnego...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

W tej sytuacji zaczęło mnie ciekawić, ile żelaza "wycieka" ze ścianek zwykłego stalowego garnka podczas gotowania obiadu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

W tej sytuacji zaczęło mnie ciekawić, ile żelaza "wycieka" ze ścianek zwykłego stalowego garnka podczas gotowania obiadu...

 

No właśnie. Nie sądziłam, że w ten sposób można znacząco zmienić poziom żelaza. Chociaż w kontekście doniesień o zatruwaniu rzymskich patrycjuszy ołowiem z rur można by się zastanawiać...

Chyba też sobie coś wrzucę do garnka ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

... Nadał żelazu postać rybki...

...zamianę garnków na żelazne...

...Żelazne kółko nie spodobało się kobietom ...

 

Wiem, że to tak ładnie poetycko mówić "żelazo": "wagony do niej podoczepiali. wielkie i ciężkie, z żelaza, stali" często jako synonim właśnie słowa "stal"

Niemniej wszędzie tam w tekście powinno być słowo "stal" bo nie sądze by w Kambodży produkowało się "żelazo armco". Czyli, stal składającą się z samego żelaza z bardzo małą ilością zanieczyszczeń - 99,9X % żelaza, z której robi się świetne transformatory z minimalną histerezą.

 

A tak z ciekawości, wie kto czy garnki ze stali nierdzewnej też będą miały właściwości antyanemiczne, bo coś mi się wydaje że nie. Nie zauważyłem wypłukiwania z nich żelaza. To działa chyba tylko w takich garkach jak u babci Waldiego. ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wszystkie organizmy żywe wykorzystują metale w czasie podstawowych funkcji życiowych, od oddychania po transkrypcję DNA. Już najwcześniejsze organizmy jednokomórkowe korzystały z metali, a metale znajdziemy w niemal połowie enzymów. Często są to metale przejściowe. Naukowcy z University of Michigan, California Institute of Technology oraz University of California, Los Angeles, twierdzą, że żelazo było tym metalem przejściowym, który umożliwił powstanie życia.
      Wysunęliśmy radykalną hipotezę – żelazo było pierwszym i jedynym metalem przejściowym wykorzystywanym przez organizmy żywe. Naszym zdaniem życie oparło się na tych metalach, z którymi mogło wchodzić w interakcje. Obfitość żelaza w pierwotnych oceanach sprawiła, że inne metale przejściowe były praktycznie niewidoczne dla życia, mówi Jena Johnson z University of Michigan.
      Johnson połączyła siły z profesor Joan valentine z UCLA i Tedem Presentem z Caltechu. Profesor Valentine od dawna bada, jakie metale wchodziły w skład enzymów u wczesnych form życia, umożliwiając im przeprowadzanie niezbędnych procesów życiowych. Od innych badaczy wielokrotnie słyszała, że przez połowę historii Ziemi oceany były pełne żelaza. W mojej specjalizacji, biochemii i biochemii nieorganicznej, w medycynie i w procesach życiowych, żelazo jest pierwiastkiem śladowym. Gdy oni mi powiedzieli, że kiedyś nie było pierwiastkiem śladowym, dało mi to do myślenia, mówi uczona.
      Naukowcy postanowili więc sprawdzić, jak ta obfitość żelaza w przeszłości mogła wpłynąć na rozwój życia. Ted Present stworzył model, który pozwolił na sprecyzowanie szacunków dotyczących koncentracji różnych metali w ziemskich oceanach w czasach, gdy rozpoczynało się życie. Najbardziej dramatyczną zmianą, jaka zaszła podczas katastrofy tlenowej, nie była zmiana koncentracji innych metali, a gwałtowny spadek koncentracji żelaza rozpuszczonego w wodzie. Nikt dotychczas nie badał dokładnie, jaki miało to wpływ na życie, stwierdza uczona.
      Badacze postanowili więc sprawdzić, jak przed katastrofą tlenową biomolekuły mogły korzystać z metali. Okazało się, że żelazo spełniało właściwie każdą niezbędną rolę. Ich zdaniem zdaniem, ewolucja może korzystać na interakcjach pomiędzy jonami metali a związkami organicznymi tylko wówczas, gdy do interakcji takich dochodzi odpowiednio często. Obliczyli maksymalną koncentrację jonów metali w dawnym oceanie i stwierdzili, że ilość jonów innych biologiczne istotnych metali była o całe rzędy wielkości mniejsza nią ilość jonów żelaza. I o ile interakcje z innymi metalami w pewnych okolicznościach mogły zapewniać ewolucyjne korzyści, to - ich zdaniem - prymitywne organizmy mogły korzystać wyłącznie z Fe(II) w celu zapewnienia sobie niezbędnych funkcji spełnianych przez metale przejściowe.
      Valentine i Johnson chciały sprawdzić, czy żelazo może spełniać w organizmach żywych te funkcje, które obecnie spełniają inne metale. W tym celu przejrzały literaturę specjalistyczną i stwierdziły, że o ile obecnie życie korzysta z innych metali przejściowych, jak cynk, to nie jest to jedyny metal, który może zostać do tych funkcji wykorzystany. Przykład cynku i żelaza jest naprawdę znaczący, gdyż obecnie cynk jest niezbędny do istnienia życia. Pomysł życia bez cynku był dla mnie trudny do przyjęcia do czasu, aż przekopałyśmy się przez literaturę i zdałyśmy sobie sprawę, że gdy nie ma tlenu, który utleniłby Fe(II) do Fe(III) żelazo często lepiej spełnia swoją rolę w enzymach niż cynk, mówi Valentine. Dopiero po katastrofie tlenowej, gdy żelazo zostało utlenione i nie było tak łatwo biologicznie dostępne, życie musiało znaleźć inne metale, które wykorzystało w enzymach.
      Zdaniem badaczy, życie w sytuacji powszechnej dostępności żelaza korzystało wyłącznie z niego, nie pojawiła się potrzeba ewolucji w kierunku korzystania w innych metali. Dopiero katastrofa tlenowa, która dramatycznie ograniczyła ilość dostępnego żelaza, wymusiła ewolucję. Organizmy żywe, by przetrwać, musiały zacząć korzystać z innych metali. Dzięki temu pojawiły się nowe funkcje, które doprowadziły do znanej nam dzisiaj różnorodności organizmów żywych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Chińscy naukowcy dali nam kolejny powód, by pozostawiać niezgrabione liście w spokoju. Rośliny do przeprowadzania fotosyntezy potrzebują jonów tlenku żelaza na drugim stopniu utlenienia (Fe2+). Jednak większość żelaza w glebie stanowią jony na trzecim stopniu utlenienia (Fe3+). Uczeni ze Wschodniochińskiego Uniwersytetu Nauki i Technologii w Szanghalu odkryli, że żelazo zawarte w opadłych liściach pomaga uzupełnić te niedobory, zamieniając Fe3+ w Fe2+ za pomocą transferu elektronów.
      Rośliny w sposób naturalny zamieniają Fe3+ w Fe2+ za pomocą reakcji redukcji, w której biorą udział molekuły znajdujące się w korzeniach. Mimo to, nadal mogą cierpieć na niedobory Fe2+. Ma to poważne konsekwencje dla rolnictwa. Przez brak Fe2+ rośliny gorzej przeprowadzają fotosyntezę, dochodzi do zaburzeń w wytwarzaniu chlorofilu (chlorozy) w młodych liściach oraz słabego wzrostu korzeni, co prowadzi do zmniejszenia plonów, mówi Shanshang Liang, jeden z członków zespołu badawczego.
      Stosowane standardowo w rolnictwie nawozy nieorganiczne, jak FeSO4 nie są zbyt wydajne, gdyż dostarczane wraz z nimi jony Fe2+ szybko zmieniają się w Fe3+. Z kolei lepiej spełniające swoją rolę nawozy organiczne, jak chelaty żelaza, są drogie. Można, oczywiście, zmodyfikować rośliny genetycznie tak, by bardziej efektywnie czerpały Fe2+, jednak to wyzwanie zarówno naukowe, ponadto rośliny GMO wciąż budzą kontrowersje. Tymczasem wystarczy pozostawić szczątki roślin, by zapewnić dostarczenie do gleby składników zapewniających rozwój kolejnych pokoleń roślin.
      Chiński zespół już podczas poprzednich badań zauważył, że żelazo zmienia swoją wartościowość podczas biochemicznych reakcji polegających na transferze elektronów. Proces taki zachodzi pomiędzy Fe3+ a pewnymi enzymami w korzeniach roślin. Teraz naukowcy wykorzystali rentgenowską spektrometrię fotoelektronów, spektroskopię fourierowską w podczerwieni oraz spektroskopię UV-VIS do obserwacji zamiany Fe3+ w Fe2+ w liściach herbaty, zimokwiatu wczesnego i innych roślin.
      Nasza praca pozwala zrozumieć, skąd się bierze Fe2+ w glebie oraz w jaki sposób – za pomocą opadłych liści – dochodzi do zamiany Fe3+ w Fe2+. To bardzo wydajny proces, dodaje Shanshang Liang.
      Naukowcy zauważyli też, że wydajność całego procesu oraz równowaga pomiędzy jonami Fe2+ a Fe3+ mogą silnie zależeć od temperatury otoczenia. Dlatego też planują przeprowadzić badania w tym kierunku. Stwierdzili też, że kwasowość gleby ma istotny wpływ na wchłanianie Fe2+ przez rośliny. Jesteśmy też zainteresowani tym, w jaki sposób opadłe liście poprawiają jakość gleby. To może doprowadzić do opracowania nowych strategii produkcji rolnej, stwierdzają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ludzie latają w kosmos od kilkudziesięciu lat i od samego początku specjaliści badają skutki zdrowotne pobytu w przestrzeni kosmicznej. Wiemy, że długotrwałe przebywanie w stanie nieważkości prowadzi do osłabienia mięśni i kości, a niedawne badania sugerują, iż uszkadza również mózg. Teraz, dzięki badaniom finansowanym przez Kanadyjską Agencję Kosmiczną, dowiedzieliśmy się też, dlaczego astronauci cierpią na anemię.
      Dotychczas sądzono, że anemia kosmiczna to skutek szybkiej adaptacji organizmu do warunków związanych z przemieszczeniem się płynów do górnej części ciała. W procesie tym astronauci tracą około 10% płynu z naczyń krwionośnych. Sądzono, że w wyniku tego procesu dochodzi do spadku liczby czerwonych krwinek oraz że organizm przystosowuje się do nowej sytuacji w ciągu około 10 dni. Okazało się jednak, że przyczyna jest zupełnie inna.
      Doniesienia o kosmicznej anemii sięgają czasów pierwszych załogowych wypraw w kosmos. Jednak dotychczas nie wiedzieliśmy, co jest przyczyną jej występowania. Nasze badania pokazały, że już w momencie znalezienia się w przestrzeni kosmicznej organizm przyspiesza proces niszczenia czerwonych krwinek i przyspieszone tempo utrzymuje się przez całą misję, mówi główny autor badań, doktor Guy Trudel z University of Ottawa.
      Podczas pobytu na Ziemi nasz organizm tworzy i niszczy około 2 milionów czerwonych krwinek na sekundę. Naukowcy z Ottawy odkryli, że w czasie pobytu w kosmosie niszczonych jest około 3 milionów krwinek na sekundę. Posiadanie mniejszej liczby krwinek nie jest problemem w warunkach nieważkości, jednak gdy wylądujesz na Ziemi, innej planecie czy księżycu, gdzie masz do czynienia z grawitacją, anemia oznacza mniejszą liczbę energii, mniejszą wytrzymałość i siłę. A to może zagrażać powodzeniu misji.
      Kanadyjczycy zaprzęgli do badań 14 astronautów. Mierzyli zawartość tlenku węgla w wydychanym przez nich powietrzu. Jedna molekuła CO powstaje ze zniszczenia jednej molekuły hemu, czerwonego barwnika krwi. Na tej podstawie mogli oszacować tempo niszczenia komórek krwi podczas pobytu człowieka w przestrzeni kosmicznej.
      Uczeni nie badali produkcji czerwonych ciałek w kosmosie, ale przyjęli, że i ona musiała się zwiększyć. Gdyby bowiem tak nie było, każdy astronauta cierpiałby na ciężką anemię. Tymczasem wśród 13 astronautów, którym po powrocie na Ziemię pobrano krew, anemię miało 5. Dalsze badania pokazały, że anemia ta całkowicie ustępuje w ciągu 3-4 miesięcy po powrocie na Ziemię.
      Co ciekawe, gdy zbadano astronautów rok po zakończeniu misji, okazało się, że ich organizmy wciąż niszczą o 30% czerwonych krwinek więcej, niż przed misją. To zaś sugeruje, że w przestrzeni kosmicznej wystąpiły jakieś długotrwałe zmiany kontroli poziomu czerwonych ciałek krwi. Stwierdzono również, że im dłuższy pobyt w kosmosie, tym poważniejsza anemia.
      Badania kanadyjskich naukowców oznaczają, że przy planowaniu długotrwałych misji kosmicznych, z pobytem na Marsie i Księżycu, należy brać pod uwagę kwestię anemii i zastanowić się, jak jej zapobiegać. Można próbować to zrobić na przykład poprzez odpowiednią dietę. Nie wiemy też, jak długo po misji utrzymuje się stan, w którym dochodzi do podwyższonego tempa niszczenia czerwonych krwinek.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy, na czele którego stali specjaliści z University of Edinburgh, zidentyfikował geny powiązane ze starzeniem się i wyjaśnia, dlaczego proces starzenia się przebiega tak różnie u różnych ludzi. Wyniki badań sugerują, że utrzymywanie odpowiedniego poziomu żelaza we krwi pomaga starzeć się lepiej i żyć dłużej.
      Naukowcy oparli swoje badania na na analizie danych genetycznych ponad miliona osób. Jesteśmy bardzo podekscytowani tymi wynikami. Mamy tutaj silną sugestię, że zbyt wysoki poziom żelaza we krwi zmniejsza liczbę zdrowo przeżytych lat oraz że utrzymywanie odpowiedniego poziomu żelaza pozwala kontrolować proces starzenia się. Sądzimy, że nasze odkrycia dotyczące metabolizmu żelaza pozwoli wyjaśnić, dlaczego spożywanie bogatego w żelazo czerwone mięso wiąże się z różnymi schorzeniami wieku starszego, jak na przykład z chorobami serca, mówi główny badać doktor Paul Timmers.
      Wraz z wiekiem nasz organizm powoli traci zdolność do homeostazy, czyli utrzymywania równowagi pomiędzy poszczególnymi parametrami. Brak tej równowagi jest przyczyną wielu chorób, a w końcu śmierci. Jednak przebieg procesu starzenia się jest bardzo różny u różnych ludzi. U niektórych pojawiają się poważne chroniczne schorzenia już w dość młodym wieku i ludzie ci szybko umierają, inni z kolei żyją w zdrowiu przez bardzo długi czas i do końca swoich dni są w dobrej kondycji.
      Autorzy najnowszych badań przyjrzeli się genom i odkryli dziesięć regionów odpowiedzialnych za długość życia, długość życia w zdrowiu oraz długość życia w idealnych warunkach. Naukowcy zauważyli, że istnieje silna korelacja pomiędzy tymi trzema czynnikami, a poziomem żelaza we krwi. Badania statystyczne przeprowadzone metodą randomizacji Mendla potwierdziły, że poziom żelaza ma najbardziej istotny wpływ na długość życia w zdrowiu.
      Na poziom żelaza we krwi wpływ ma nasza dieta. Zbyt wysoki lub zbyt niski jego poziom jest powiązany z chorobami wątroby, chorobą Parkinsona, a w starszym wieku wiąże się z obniżeniem zdolności organizmu do zwalczania infekcji. "Możliwości syntezy hemu spadają wraz z wiekiem. Jego niedobory prowadzą do akumulacji żelaza, stresu oksydacyjnego i dysfunkcji mitochondriów.
      Akumulacja żelaza pomaga patogenom w podtrzymaniu infekcji, co jest zgodne z obserwowaną u osób starszych podatnością na infekcje. Z kolei nieprawidłowa homeostaza żelaza w mózgu wiąże się z chorobami neurodegeneracyjnymi, jak choroba Alzheimera, Parkinsona czy stwardnienie rozsiane, piszą autorzy badań.
      Naukowcy zastrzegają, że kwestie te wymagają dalszych badań, ale już przewidują, że ich odkrycie może doprowadzić do opracowania leków, które zmniejszą niekorzystny wpływ starzenia się na zdrowie, wydłużą nie tylko ludzkie życie, ale też okres życia w zdrowiu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dwie kambodżańskie siostry, 98-letnia Bun Sen i 101-letnia Bun Chea, spotkały się po raz pierwszy od 1973 r. Przez ten czas obie były przekonane, że druga nie żyje, bo zginęła z rąk Czerwonych Khmerów.
      Ben Sen straciła męża w 1979 r. Ostatecznie osiedliła się w pobliżu wysypiska Stung Meanchey w południowej części miasta Phnom Penh. Latami jej życie kręciło się wokół przeszukiwania śmieci. Nie przestawała jednak marzyć o odwiedzeniu rodzinnej wioski w prowincji Kâmpóng Cham.
      Choć droga nie byłaby wcale długa, wiele czynników, w tym wiek i niemożność chodzenia, sprawiało, że podróż nie miała jak dojść do skutku.
      W pewnym momencie nad realizacją marzenia zaczęła pracować wspierająca Ben Sen od 2004 r. organizacja Cambodian Children's Fund (CCF). To jej pracownik Hoy Leanghoin odkrył, że 101-letnia siostra i 92-letni brat kobiety nadal mieszkają w rodzinnej wiosce. W zeszłym tygodniu po niemal półwiecznej rozłące rodzeństwo ponownie się spotkało.
      Opuściłam wioskę wiele, wiele lat temu. Zawsze myślałam, że moi bracia i siostry nie żyją. Możliwość objęcia starszej siostry tak wiele dla mnie znaczy. Gdy młodszy brat po raz pierwszy dotknął mojej ręki, zaczęłam płakać - opowiada Ben Sen.
      Mąż Bun Chea także zginął z rąk Czerwonych Khmerów. Wdowa samotnie wychowywała 12 dzieci. Była przekonana, że jej młodsza siostra nie żyje. Trzynastu naszych krewnych zostało zabitych przez Pol Pota. Myśleliśmy, że Bun Sen też.
      Obecnie siostry nadrabiają stracony czas. CCF zorganizowało drugie spotkanie: tym razem to Bun Chea odwiedziła siostrę w Stung Meanchey. Razem zwiedzały Phnom Penh.
      Gdy w 2004 r. Bun Sen jako jedna z pierwszych "babć" przyłączyła się do CCF i Granny Program, nadal zarabiała na życie, przeszukując śmiecie. Dbała o wiele dzieci, które porzucono na wysypisku. Przedstawiała założyciela i dyrektora wykonawczego CCF Scotta Neesona biednym. Stała się oczami i uszami Fundacji; zawsze wiedziała, kto potrzebuje pomocy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...