Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Około 56 milionów lat temu, czyli 9 milionów lat po upadku meteorytu, który zabił dinozaury, na Ziemi doszło do kolosalnych zmian klimatycznych. Temperatura na planecie wzrosła o 6 stopni Celsjusza. Wyższa temperatura utrzymywała się przez około 150 000 lat, gdyż tyle czasu  potrzeba było, by nadmiar węgla w oceanach i atmosferze został wchłonięty i uwięziony w osadach dennych.

Przyczyną paleoceńsko-eoceńskie maksimum termicznego (PETM) było pojawienie się w atmosferze i oceanach około 2,5 biliona ton węgla. Istnieje wiele teorii na temat jego pochodzenia. Niektórzy twierdzą, że został on wyrzucony przez wulkany, według innych pochodził on z pożarów torfowisk lub został przyniesiony przez meteoryty.

Problem jednak w tym, że nie ma żadnych dowodów na masowe pożary, uderzenia meteorytów, żadnych warstw sadzy.

Naukowcy z Rice University uważają, że węgiel pochodził z bogatych w metan klatratów znajdujących się pod dnem morskim.

Gdy morskie organizmy obumierają, opadają na dno i rozkładają się. Ciśnienie wody oraz jej niska temperatura nie dopuszczają do ucieczki metanu. Jego molekuły zostają uwięzione przez wodę i powstają bogate weń hydraty.

Jako że w okresie przed PETM wody oceanów były cieplejsze niż obecnie, uważa się, iż warstwa, w której mogły powstawać hydraty była znacznie cieńsza, a zatem samych hydratów było mniej.

Naukowcy z Rice stwierdzili jednak, że klatratów mogło być równie dużo, co obecnie. Zastosowaliśmy modele numeryczne i odkryliśmy, że jeśli oceany były cieplejsze, zawierały mniej rozpuszczonego tlenu, a kinetyka formowania się metanu była w nich szybsza - mówi profesor chemii George Hirasaki. Im mniej tlenu rozkładającego materię organiczną, tym więcej opada jej na dno. Tam, w wyższej temperaturze, mikroorganizmy szybciej zmieniają ją w metan. Z tego wynika, że mimo iż strefa, w której mogą powstawać hydraty jest mniejsza, to samych hydratów może być równie dużo co obecnie.

Wciąż pozostaje zagadką, jakie wydarzenie mogło doprowadzić do szybkiego uwolnienia metanu z klatratów. Uczeni z Rice udowodnili jednak, że nie wolno ich wykluczać jako źródła nadmiarowego węgla, który pojawił się w atmosferze przed 56 milionami lat.

Naukowcy ostrzegają, że ludzkość, spalając paliwa kopalne, może uruchomić mechanizm gwałtownego uwalniania się metanu z klatratów. Z drugiej jednak strony zauważają, że same klatraty mogą być bardzo dobrym źródłem czystej energii, gdyż spalany metan emituje mniej dwutlenku węgla niż inne paliwa kopalne.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
gdyż spalany metan emituje mniej dwutlenku węgla niż inne paliwa kopalne

 

Co za bzdura?? Aby uzyskać energię cieplną trzeba utlenić odpowiednią ilość węgla i to do dwutlenku właśnie, powinno być "emitują mniej zanieczyszczeń siarkowych , tlenku węgla i pyłów niż pozostałe paliwa kopalne".

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wprost przeciwnie. W metanie masz 4 wiązania węgiel-wodór, w których jest zmagazynowana dodatkowa energia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

CH4 dobrze utleniony to CO2+2H2O masz rację , tym bardziej że utlenianie wodoru to wydajna reakcja.

 

Zastanawia mnie czy potężne tsunami (po uderzeniu np: meteorytu) nie powoduje unoszenia klatratów i ich uwalniania do atmosfery gdzie samozapłon może spowodować globalne wypalenie tlenu w atmosferze (lub obniżenie poniżej wartości krytycznej dla oddychania) co mogło być przyczyną okresowego wymierania gatunków na planecie (wszak znaleziono mamuty z pełnymi żołądkami) .

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zastanawia mnie czy potężne tsunami (po uderzeniu np: meteorytu) nie powoduje unoszenia klatratów i ich uwalniania do atmosfery gdzie samozapłon może spowodować globalne wypalenie tlenu w atmosferze (lub obniżenie poniżej wartości krytycznej dla oddychania) co mogło być przyczyną okresowego wymierania gatunków na planecie (wszak znaleziono mamuty z pełnymi żołądkami) .

1. Parę potężnych tsunami było w ostatnich latach, a naukowcy jakoś nie zaobserwowali uwalniania klatratów na olbrzymią skalę.

2. Moim zdaniem samozapłon czy uduszenia są prawdopodobne lokalnie, ale raczej nie na większą skalę. Uwalnianie klatratów wiąże się chyba z równoczesnym pojawieniem pary wodnej lub mgły, co nie sprzyja samozapłonowi, za to powoduje zakłócenia pogody mogące szybko rozprzestrzenić metan w atmosferze.

3. Mamut z pełnym żołądkiem mógł po prostu utonąć w błocie z roztopów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Biorąc pod uwagę, że:

 

1. do utrzymania człowieka przy życiu i w miarę normalnym funkcjonowaniu (nie wiem, jak dokładnie jest z innymi gatunkami, ale nie spodziewam się kolosalnych różnic, przynajmniej w przypadku ssaków - a przedstawiciele wszystkich gromad poza ptakami zużywają mniej energii niż ssaki) wystarczy ok. 12% tlenu

2. w atmosferze jest (obecnie) ok. 21% tlenu

3. do spalenia 1 mola metanu potrzeba 3 moli tlenu

 

można wyliczyć, że do całkowitego wypalenia 9% tlenu musiałaby się uwolnić absolutnie niebywała ilość metanu. Co więcej, wybuch musiałby zajść niesamowicie szybko, a pogoda musiałaby wykluczyć jakikolwiek ruch powietrza i ponowny napływ tlenu. Dodatkowo znaczna różnica w gęstości tlenu, powietrza i metanu wskazuje na małe prawdopodobieństwo utrzymania znacznego zagęszczenia mieszanki powietrza/tlenu oraz metanu na otwartym terenie.

 

Moim zdaniem taki scenariusz jest skrajnie mało prawdopodobny.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

można wyliczyć, że do całkowitego wypalenia 9% tlenu musiałaby się uwolnić absolutnie niebywała ilość metanu. Co więcej, wybuch musiałby zajść niesamowicie szybko, a pogoda musiałaby wykluczyć jakikolwiek ruch powietrza i ponowny napływ tlenu.

 

Nie potrzeba spalania. Jak pokazuje przykład jeziora Nyos, duży wyrzut metanu mógłby wydusić sporo tlenodysznych zanim ruch powietrza dostarczyłby tlenu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Złoża metanu lądowe jako lotne stanowią spore zagrożenie które poprzez regularne spalanie można rozładować inne to nierównomierne topnienie czap lodowych na biegunie i nadchodzące oziębienie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@Jajcenty

 

W Nyos doszło do wyrzutu CO2, a nie metanu. CO2 ma gęstość większą od gęstości tlenu, stąd ułatwione zaleganie CO2 w danym miejscu. Metan jest tymczasem znacznie lżejszy, więc ma tendencję do ulatywania do góry.

 

Weż też pod uwagę, że teren wokół Nyos jest silnie górzysty, natomiast klatraty powstają pod dnem oceanicznym, a więc generalnie na otwartym i dobrze wentylowanym terenie. Oczywiście ryzyko wybuchu/zatrucia metanem nie jest zerowe, ale wydaje mi się, że jest znacznie mniej prawdopodobne od katastrofy nad Nyos.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@Jajcenty

 

Weż też pod uwagę, że teren wokół Nyos jest silnie górzysty, natomiast klatraty powstają pod dnem oceanicznym, a więc generalnie na otwartym i dobrze wentylowanym terenie..

 

Całkowita zgoda. Chciałem jedynie pokazać, że nie wymagane jest spalanie jeśli chcemy uzyskać efekt duszący. Rzeczywiście na otwartym oceanie nie bardzo jest co dusić metanem czy co2.

 

Co do ulotności - widziałem jak podczas uzupełniania podziemnej cysterny, opary benzyny ołowiowej wypływające odpowietrzeniem zabiły wszystko w promieniu 0,5 m. Całe masy pająków i innego robactwa nie zdążyło uciec mimo, że panicznie próbowało. Do tej pory zastanawiam się czy to brak tlenu, lekkie węglowodory czy też tetraetyloołów był przyczyną tej hekatomby.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Faktycznie przyczyn śmierci może być co najmniej kilka - od siebie dodałbym jeszcze spadek temperatury w związku z odparowywaniem benzyny). Tetraetyloołów to faktycznie ciekawy trop, chociaż nie wiem, na ile wysoka jest jego ostra toksyczność.

 

Co do węglowodorów natomiast, metanu w benzynie jest bardzo niewiele, bo a) nie miesza się z nią zbyt łatwo (stąd przeważnie wspólne złoża, ale niezależne wydobycie) B) jest dodatkowo izolowany podczas rektyfikacji ropy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Zmiany orbity ziemskiej mogły być czynnikiem wyzwalającym gwałtowne ocieplenie klimatu sprzed 56 milionów lat. To paleoceńsko-eoceńskie maksimum termiczne (PETM) jest wydarzeniem geologicznym najbardziej podobnym do zmian klimatycznych, których obecnie doświadczamy. Dlatego też od dawna stanowi przedmiot zainteresowania naukowców.
      Naukowcy z Pennsylvania State University przyjrzeli się rdzeniom z PETM pobranym u wybrzeży stanu Maryland. Datowali je techniką astrochronologii polegającą na kalibrowaniu w odniesieniu do skali czasowej odnoszącej się do zjawisk astronomicznych, na przykład do cykli Milankovicia. Cykle te to okresowe zmiany trzech parametrów orbity ziemskiej: ekscentryczności, precesji i nachylenia ekliptyki. Okres tych zmian jest różny, ale raz na jakiś czas zbiegają się one i były, jak się uważa, dominującym mechanizmem paleoklimatycznym. Być może to właśnie ich zbieg był odpowiedzialny za epoki lodowe.
      Z ostatnich badań przeprowadzonych na Penn State dowiadujemy się, że zmiany ekscentryczności i precesji orbity Ziemi faworyzowały pojawienie się wyższych temperatur. Ten orbitalny wyzwalacz mógł doprowadzić do uwolnienie się węgla, co z kolei skutkowało globalnym ociepleniem znanym jako PETM. Stawiamy taką hipotezę w opozycji do bardziej popularnej interpretacji mówiącej, że PETM został wywołany przez gwałtowny wulkanizm, mówi profesor Lee Kump.
      Analizy pokazały też, że początkowy etap PETM, ten w którym temperatury rosły, trwał około 6000 lat. Wartość ta mieści się w dotychczasowych szacunkach mówiących o kilkuset do dziesiątków tysięcy lat. Jej określenie jest ważne po to, byśmy mogli zrozumieć, jak szybko następowało wówczas globalne ocieplenie. W czasie tych 6000 lat do atmosfery dostało się 10 000 gigaton węgla w postaci CO2 i metanu, co oznacza roczną emisję rzędu 1,5 gigatony. Średnia globalna temperatura wzrosła o około 6 stopni.
      Ówczesne tempo emisji węgla do atmosfery było o około rząd wielkości mniejsze niż obecnie. Emitujemy rocznie od 5 do 10 razy więcej węgla niż w czasie wydarzenia, które 56 milionów lat temu pozostawiło trwały ślad na naszej planecie, dodaje Kump.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Paleoceńsko-Eoceńskie Maksimum Termiczne (PETM) jest uznawane za okres, który pod względem emisji węgla do atmosfery jest najbliższy czasom współczesnym. Już przed PETM klimat Ziemi był znacznie cieplejszy niż obecnie. W wyniku masowego wulkanizmu w okresie PETM średnie temperatury na Ziemi wzrosły o kolejnych 5–8 stopni Celsjusza. Jednak najnowsze badania pokazują, że natura nawet nie zbliża się do tego, co robimy obecnie. Okazuje się, że ludzie wprowadzają do atmosfery węgiel w tempie 3 do 8 razy szybszym, niż działo się to w PETM.
      Wysokie stężenie węgla w atmosferze w czasie PETM spowodowało, że oceany wchłonęły olbrzymie ilości tego pierwiastka, co zapoczątkowało reakcję chemiczną prowadzącą do znacznego zakwaszenia wody i wyginięcia wielu zwierząt morskich.
      Obecnie nie ma jednoznacznej odpowiedzi, skąd nagle uwolniły się olbrzymie ilości węgla, które doprowadziły do PETM. Jedne hipotezy mówią o masywnym wulkanizmie, inne o rozpuszczeniu się klatratów metanu zalegających na dnie morskim, jeszcze inne nie wykluczają uderzenia komety.
      Badania przeprowadzone właśnie przez należące do Columbia University Lamont-Doherty Earth Observatory wzmacniają hipotezie o masowym wulkanizmie i dostarczają bardziej precyzyjnych danych na temat ilości emitowanego węgla.
      Chcemy zrozumieć, jak cały system ziemski zareaguje na obecną szybką emisję CO2. PETM nie jest przykładem idealnym, ale jest najlepszym, jaki mamy. Dzisiaj emisja jest znacznie szybsza, mówi główna autorka badań, Laura Hayes.
      Dotychczasowe badania PETM opierały się na nielicznych danych pozyskanych z oceanów, które następnie poddawano modelowaniu komputerowemu.
      Autorzy najnowszych badań podeszli do nich nieco inaczej. Hodowali oni otwornice w morskiej wodzie, której skład dobrali tak, by przypominał wodę z czasów PETM. Odnotowywali, jak w czasie wzrostu otwornice absorbowały do muszli bor. Następnie porównali tak uzyskane dane z danymi na temat boru w muszlach skamieniałych otwornic, znalezionych na dnie Pacyfiku i Atlantyku. To pozwoliło im na zidentyfikowanie specyficznych sygnatur izotopów węgla związanych z ich pochodzeniem.
      Tak przeprowadzone badania wykazały, że w czasie PETM źródłem większości węgla w oceanach była aktywność wulkaniczna. Prawdopodobnie centrum tej aktywności stanowiły okolice obecnej Islandii. W tym czasie na północnym Atlantyku powstała duża prowincja magmatyczna NAIP.
      Jak wiemy z wcześniejszych badań, na przestrzeni co najmniej 4–5 tysięcy lat wulkany intensywnie wyrzucały węgiel do atmosfery. Autorzy najnowszych badań obliczyli, że w tym czasie do oceanów przedostało się nawet 14,9 biliarda ton węgla, czyli o 2/3 więcej, niż było go wcześniej.
      Obecnie oceany również pochłaniają coraz więcej węgla, a dowody wskazują, że dzieje się to znacznie szybciej niż poprzednio. Poziom dwutlenku węgla w atmosferze wzrósł z 280 ppm w epoce przedprzemysłowej do 415 obecnie. Byłby jeszcze wyższy, gdyby węgiel nie był wchłaniany przez oceany. Jako, że trafia on do wody, ta staje się coraz bardziej kwaśna, a rosnąca kwasowość wpływa na organizmy żyjące w oceanach.
      Jeśli dodaje się węgla powoli, organizmy żywe mają czas się zaadaptować. Gdy jednak jest to bardzo szybki proces, to pojawia się problem. W przeszłości zwiększanie ilości węgla w oceanach miało niedobre konsekwencje, mówi współautorka badań, Bärbel Hönish. Uczona przypomina, że mimo wolniejszego zakwaszania oceanów w czasie PETM doszło do wymierania wielu gatunków. Teraz dodajemy go do oceanów znacznie szybciej i konsekwencje naszych działań będą prawdopodobnie bardzo poważne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od ostatnich 30 lat Biegun Południowy ociepla się ponadtrzykrotnie szybciej niż średnia globalna, wynika z badań przeprowadzonych przez profesora Ryana Fogta i Kyle'a Clema z Ohio State University. Naukowcy informują, że ocieplanie to jest głównie powodowane przez naturalną zmienność klimatu i dodatkowo wzmacniane przez emisję gazów cieplarnianych.
      Clem, który obecnie pracuje na nowozelandzkim Victoria University, mówi, że zawsze pasjonowała go pogoda, jej potęga i nieprzewidywalność. Dzięki pracy z Ryanem nauczyłem się wszystkiego o klimacie Antarktyki i półkuli południowej. Przede wszystkim zaś dowiedziałem się wiele o Antarktyce Zachodniej, jego ocieplaniu się, topnieniu lodu i wzrostu poziomu oceanów. Antarktyka doświadcza jednych z największych ekstremów i zmienności pogodowych na planecie, a w powodu jej izolacji, bardzo niewiele o tym kontynencie wiemy. Co roku zaskakuje nas czymś nowym, mówi Clem.
      Wiemy, że przez cały XX wiek większość Antarktyki Zachodniej oraz Półwysep Antarktyczny ogrzewały się i dochodziło do utraty lodu. Jednocześnie zaś Biegun Południowy, znajdujący się w odległym wysoko położonym regionie, ochładzał się aż do lat 80. ubiegłego wieku. Od tamtej pory znacząco się ocieplił.
      Clem i jego zespół przeanalizowali dane ze stacji pogodowej na Biegunie Południowym oraz wykorzystali modele klimatyczne do zbadania mechanizmu ocieplania się wnętrza Antarktyki. Okazało się, że w latach 1989–2018 Biegun Południowy ocieplił się o 1,8 stopnia Celsjusza. Średnie tempo ogrzewania wynosiło więc 0,6 stopnia na dekadę, było więc trzykrotnie większe niż średnia globalna w tym czasie.
      Autorzy badań stwierdzili, że ogrzewanie się wnętrza Antarktyki jest spowodowane głównie przez tropiki, szczególnie zaś przez wysokie temperatury wód oceanicznych zachodniego Pacyfiku, które doprowadziły do zmiany rozkładu wiatrów na Południowym Atlantyku, przez co zwiększył się transport ciepłego powietrza nad Biegun Południowy. Te zmiany na południowym Atlantyku to, zdaniem uczonych, ważny mechanizm powodujący anomalie klimatyczne we wnętrzu Antarktyki.
      Zdaniem Clema i Fogta, ogrzewanie się wnętrza kontynentu, mimo iż sam mechanizm zmian jest naturalny, nie miałoby miejsca gdyby nie działalność człowieka. Naturalny mechanizm, czyli zmiana układu wiatrów u atlantyckich wybrzeży Antarktyki spowodowana przez temperatury wód na zachodnim Pacyfiku, został bowiem bardzo wzmocniony przez emisję gazów cieplarnianych, przez którą wody Pacyfiku są wyjątkowo gorące.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rośliny potrzebują dwutlenku węgla do przeprowadzania fotosyntezy. Zatem więcej dwutlenku węgla w atmosferze zwiększa wzrost roślin (mechanizm ten, o czym informowaliśmy, w tak prosty sposób działa jedynie w warunkach laboratoryjnych). Jednocześnie jednak więcej CO2 w atmosferze oznacza wyższą temperaturę, co może m.in. spowodować niedobory wody potrzebnej rośliną, ograniczać ich wzrost i zwiększać ryzyko usychania. Na łamach PNAS ukazał się właśnie artykuł, którego autorzy stwierdzają, że od poziomu CO2 czy ogólnego wzrostu temperatury ważniejszy dla roślin jest stosunek obu tych czynników.
      Korzyścią, jaką lasy odnoszą ze zmiany klimatu, jest zwiększony poziom atmosferycznego CO2, dzięki czemu drzewa mogą zużywać mniej wody przy bardziej intensywnej fotosyntezie. Jednak problemem związanym ze zmianą klimatu są rosnące temperatury, które powodują, że drzewa zużywają więcej wody, a fotosynteza przebiega wolniej. Na podstawie realistycznego modelu fizjologii drzew zbadaliśmy wpływ tych przeciwstawnych sobie zjawisk, czytamy w artykule.
      Z badań wynika, że niekorzystny wpływ wzrostu temperatury tylko do pewnej granicy będzie kompensowany przez wzrost stężenia dwutlenku węgla. Jeśli wzrost temperatury będzie szybszy niż wzrost CO2, a proporcje pomiędzy oboma zjawiskami przekroczą pewien poziom, lasy mogą sobie nie poradzić. Jak mówią naukowcy, istniały pewne różnice pomiędzy różnymi typami lasów, ale ogólny wpływ obserwowanych zjawisk był prawdziwy dla wszystkich lasów.
      Wspomniana granica, powyżej której lasy przestaną sobie radzić, zależy od tego, jak szybko będą w stanie dostosować się do zmian klimatu. Niektóre gatunki drzew są w stanie zareagować fizycznymi zmianami na suszę czy inne stresory środowiskowe i dzięki nim zmaksymalizować wykorzystanie dostępnych zasobów. Drzewa te mogą na przykład zmienić kształt liści czy dostosować tempo fotosyntezy.
      Autorzy badań przyjrzeli się wpływowi wzrostowi CO2 i temperatury na lasy w USA. Sprawdzili też, czy zdolności aklimatyzacyjne różnych gatunków drzew będą odgrywały tutaj rolę.
      Okazało się, że jeśli lasy będą w stanie się zaaklimatyzować, to dodatkowa koncentracja CO2 na każdy 1 stopień wzrostu temperatury musi wynieść co najmniej 67 ppm, by drzewa nadal mogły rosnąć. Taki scenariusz rozwoju sytuacji przewiduje 71% modeli klimatycznych wykorzystanych na potrzeby obecnych badań. Jeśli zaś drzewom nie uda się zaaklimatyzować, to wzrost koncentracji CO2 musi wynieść co najmniej 89 ppm na każdy stopień. Taki scenariusz jest przewidywany przez nieco ponad połowę wykorzystanych modeli. To zaś oznacza, że wciąż istnieje olbrzymia niepewność co do tego, co stanie się z lasami.
      Dodatkowym problemem jest fakt, że nawet jeśli wspomniany stosunek CO2 do temperatury wykroczy poza określoną granicę na jeden sezon lub podobnie krótki czas, drzewa mogą zacząć wymierać. Ponadto autorzy badań nie brali pod uwagę wzrostu temperatur na pasożyty drzew czy pożary lasów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed około 56 milionami lat, u zbiegu paleocenu i eocenu na Ziemi rozpoczęło się globalne ocieplenie. W ciągu zaledwie 20 000 lat do atmosfery przedostały się olbrzymie ilości dwutlenku węgla, a średnie temperatury na planecie wzrosły o 5–8 stopni Celsjusza. Na arktycznych porośniętych palmami plażach wygrzewały się krokodyle, a średnie szerokości geograficzne pokryły mokradła i dżungla.
      Wydarzenie to, znane jako paleoceńsko-eoceńskie maksimum termiczne (PETM) szczególnie interesuje naukowców, gdyż dzięki niemu próbują dowiedzieć się więcej o możliwych skutkach obecnych zmian klimatu. Dotychczas wysunięto wiele hipotez dotyczących przyczyn emisji CO2 i ocieplenia. Mówi się zarówno o zwiększeniu wulkanizmu, uderzeniu komety, jak i emisji metanu z oceanicznych hydratów. Najnowsze badania sugerują, że początkiem PETM były niewielkie zmiany orbity Ziemi wokół Słońca.
      Profesorowie Lucas Lourens z Uniwersytetu w Utrechcie i Richard Zeebe z Uniwersytetu Hawajskiego wykorzystali rdzenie pobrane z dna oceanicznego. Wiek pobranego materiału waha się od 53 do 58 milionów lat, a wyniki jego badań wyjątkowo dobrze pasują do obliczeń skali astronomicznej. Jeśli przyjrzymy się ostatnim 100 milionom lat, zauważymy związek pomiędzy ekscentrycznością orbity Ziemi a klimatem, mówi Zeebe.
      Uczeni przyjrzeli się rodzajom osadów, jakie pojawiły się w okresie, gdy rozpoczynało się PETM. Zauważyli tam regularne wzorce, które powiązali z ekscentrycznością orbity wyliczoną na podstawie modeli astronomicznych. Jako, że margines błędu sięga zaledwie 0,1%, można z dużą dozą prawdopodobieństwa stwierdzić, że początek PETM zbiegł się z maksimum ekscentryczności orbity Ziemi wokół Słońca. To zaś sugeruje, że gwałtowne zmiany klimatu zostały wywołane właśnie tym zjawiskiem. W tym czasie klimat na Ziemi już i tak powoli się ocieplał, zmiana orbity stała się dodatkowym mechanizmem, który spowodował całą lawinę wydarzeń prowadzących do szybkiego ocieplenia się klimatu.
      PETM jest obecnie dla nas bardzo interesujący, gdyż to jeden z niewielu okresów, gdy Ziemia ocieplała się tak szybko i gwałtownie. Pokazuje on, jak dodatkowy mechanizm może wywołać całą reakcję łańcuchową. To też może być dobrym wyznacznikiem tego, co może czekać nas w przyszłości, gdy niewielkie zmiany zostają przez jeden dodatkowy element przekształcone w wielkie gwałtowne zmiany.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...