Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Błękitne rozbłyski to rodzaj bioluminescencji związanej z bruzdnicami. Biologom po raz pierwszy udało się opisać mechanizm tego zjawiska, które można obecnie obserwować w wodach przybrzeżnych Kalifornii.

J. Woodland Hastings, jeden z członków zespołu badawczego i główny autor artykułu, który ukazał się w Proceedings of the National Academy of Sciences, już niemal 40 lat temu przekonywał, że u bruzdnic muszą występować bramkowane napięciem kanały protonowe. Jednak dopiero Susan Smith z Emory School of Medicine, Thomas DeCoursey z Rush University Medical Center i inni zdołali potwierdzić, że tak jest, identyfikując i testując u glonów geny, które przypominają geny kanałów zbadane wcześniej u ludzi, myszy oraz osłonic.

Wg naukowców, świecenie pojawia się w wyniku następującego ciągu zdarzeń. Mechaniczne drażnienie przez wodę generuje impulsy elektryczne przepływające wokół wypełnionej protonami wakuoli (wodniczki). Impulsy doprowadzają do otwarcia bramkowanych napięciem kanałów protonowych, które łączą wakuolę z kieszeniami w błonie tych struktur komórkowych - scyntylonami. Protony docierające do scyntylonów aktywują tam lucyferazę (lucyferaza to enzym występujący u niektórych zwierząt, który po dodaniu związku zwanego lucyferyną oraz źródła energii chemicznej wytwarza błękitne światło). Stąd świecenie w czasie zakwitów bruzdnic.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Zwierzęta przybierają na ogół jakieś barwy, by odstraszyć drapieżniki albo się przed nimi ukryć. Okazuje się, że niesymbiotyczne bakterie oceaniczne zachowują się dokładnie na odwrót - świecą, by zwrócić na siebie uwagę, bo zjedzenie stanowi gwarancję rozprzestrzenienia i opanowania nowych okolic.
      Margarita Zarubin, studentka z Uniwersytetu Hebrajskiego w Jerozolimie, która wcześniej uczyła się w Oldenburgu, badała bioluminescencyjne bakterie Photobacterium leiognathi. Hipoteza, że mikroby świecą, by zostać upolowane, pojawiła się ponad 30 lat temu, ale bazowała głównie na częstym występowaniu luminescencyjnych bakterii w przewodzie pokarmowym ryb. Nie przeprowadzono eksperymentów, które mogłyby to potwierdzić. Chcąc sprawdzić, "co w morskiej trawie piszczy", izraelski zespół umieścił na jednym końcu akwarium torebkę ze zwykłymi P. leiognathi, a na drugim z bakteriami zmodyfikowanymi genetycznie w taki sposób, by nie mogły świecić. W zbiorniku znajdowały się m.in. artemia (Artemia). Okazało się, że skorupiaki i inne organizmy gromadziły się wokół świecącego woreczka, a koło ciemnego nie.
      W kolejnym etapie badań biolodzy pozwolili wszystkim pływać swobodnie. Po paru godzinach odwłoki przedstawicieli zooplanktonu zaczęły świecić. Później świecące artemia zmieszano z osobnikami, które nie jadły P. leiognathi i umieszczono w kanale wodnym z polującymi na nie rybami Apogon annularis. By na filmie było dokładnie widać przebieg zdarzeń, wykorzystano podświetlenie podczerwienią. Okazało się, że nocne ryby polowały wyłącznie na skorupiaki ze świecącymi odwłokami. Po zbadaniu odchodów A. annularis szybko stało się jasne, że bakterie przeszły przez ich przewód pokarmowy bez najmniejszego uszczerbku.
      Wykorzystując skorupiaki i ryby, luminescencyjne bakterie nie tylko przemieszczały się po oceanie, ale i pożywiły się przy okazji tym, co znajdowało się w jelitach przewoźnika. To wysoce korzystne przede wszystkim dla bakterii z ubogich w pokarm głębin.
    • przez KopalniaWiedzy.pl
      Od jakiegoś czasu poszukuje się związków chemicznych wspomagających obrazowanie, które sprawdziłyby się w ramach monitoringu pacjentów zażywających heparynę, czyli lek zapobiegający krzepnięciu krwi. Wg Włochów, do tego celu świetnie nadaje się lucyferaza - enzym odpowiadający za świecenie robaczków świętojańskich (Bioconjugate Chemistry).
      Zespół Bruce'a Branchiniego wskazywał na potrzebę wynalezienia takich związków wspomagających obrazowanie, które emitowałyby promieniowanie w bliskiej podczerwieni. Głębiej penetruje ono tkankę, pozwalając lekarzom wykryć białka zaangażowane w krzepnięcie.
      Podczas testów naukowcy połączyli proteinę pozyskiwaną z lucyferazy świetlików z gatunku Photinis pyralis ze specjalnym fluorescencyjnym barwnikiem. Umożliwia on białku emitowanie promieniowania w bliskiej podczerwieni. Okazało się, że pozwala to wykryć niewielkie ilości aktywnego czynnika X (Xa). Inhibitory tego związku wykorzystuje się w zapobieganiu zdarzeniom zakrzepowo-zatorowym. Czynnik Xa bierze udział m.in. w aktywacji VIII czynnika krzepnięcia.
      Bioluminescencja i rezonansowe przeniesienie energii wzbudzenia bioluminescencji (ang. bioluminescence resonance energy transfer, BRET) to dwa naturalnie występujące zjawiska emisji promieniowania, które wykorzystano do różnych celów, np. obrazowania in vivo. Kluczowym elementem takich aplikacji jest lucyferaza, dająca żółtozielone światło. Opisywane technologie można ulepszyć, bazując na potencjale promienowania w bliskiej podczerwieni (nIR). Włosi zademonstrowali, że da się uzyskać emisję spektralną z maksimami 705 i 783 nm, wiążąc kowalencyjnie wariant lucyferazy z fluorescencyjnym barwnikami nIR.
      Akademicy zwracają uwagę na znaczenie wybiórczego znakowania fluorescencyjnymi barwnikami i skuteczność zapewnianą przez proces międzycząsteczkowego BRET. Włochom udało się też skonstruować wspomniane już wcześniej biotynylowane (oznakowane) białko fuzujące, czyli zlewające się, które emitowało promieniowanie w podczerwieni. Nowy materiał unieruchomiono na podłożu/macierzy zawierającej streptoawidynę - stosowaną w biotechnologii do oczyszczania białek - pokazując, że rozwiązanie można by uwzględnić w obrazowaniu z wykorzystaniem receptorów. To samo białko zastosowano do określenia aktywności czynnika Xa przy fizjologicznych stężeniach we krwi.
      W badanym układzie emisja w podczerwieni była możliwa tylko w sytuacji, kiedy cząsteczka lucyferazy była ściśle powiązana z barwnikiem fluorescencyjnym. Autorzy studium wykorzystali to zjawisko i połączyli obie te molekuły za pomocą krótkiego łańcucha aminokwasowego podatnego na trawienie przez czynnik Xa. W tej sytuacji aktywacja czynnika X powodowała nie tylko powstawanie skrzepu, ale też rozpad kompleksu lucyferazy z fluorochromem i tym samym spadek emisji nIR w próbce. Dokładny pomiar tempa tego zaniku pozwolił tym samym na ustalenie aktywności enzymatycznej czynnika Xa.
    • przez KopalniaWiedzy.pl
      Dwoje naukowców z Instytutu Oceanografii imienia Scripps Uniwersytetu Kalifornijskiego w San Diego zbadało tajemnicze rozbłyski oślepiającego luminescencyjnego światła, emitowane przez ślimaka morskiego Hinea brasiliana. Wg nich, mają one służyć odstraszaniu drapieżników, stwarzając złudzenie, że migające zwierzęta są większe niż w rzeczywistości.
      Mięczaki te występują przeważnie w ciasnych skupiskach wzdłuż skalistych brzegów. Amerykanie zauważyli, że zamiast wytwarzać skoncentrowany promień światła, H. brasiliana wykorzystują muszlę do rozpraszania i rozprzestrzeniania na wszystkie strony zielonej poświaty.
      Dimitri Deheyn przeprowadził eksperymenty w uniwersyteckim akwarium. Dzięki temu udokumentował, w jaki sposób ślimak włącza świecenie. Podczas badań konfrontował mięczaka z krabem lub pływającą w pobliżu krewetką. Nerida Wilson, która w międzyczasie przeszła do Muzeum Australijskiego w Sydney, pomagała koledze, zbierając ślimaki u wybrzeży Australii. To rzadkość, by jakiekolwiek żyjące przy dnie ślimaki wykorzystywały bioluminescencję. Jeszcze bardziej zdumiewa, że nasz mięczak ma tak skutecznie maksymalizującą sygnał muszlę – podkreśla Wilson.
      Odkrycie mechanizmu, za pośrednictwem którego H. brasiliana świeci, zaskoczyło naukowców. Dotąd żółtawą, nieprzezroczystą muszlę postrzegano bowiem jako strukturę uniemożliwiającą transmisję światła. Tymczasem okazuje się, że działa ona jak filtr. Gdy ciało ślimaka zaczyna świecić, muszla rozprasza tylko zielone promieniowanie.
      W przyszłości akademicy zamierzają dokładniej zbadać to zjawisko. Najprawdopodobniej znajdzie ono zastosowanie przemysłowe.
    • przez KopalniaWiedzy.pl
      Belgijscy naukowcy odkryli, że rekiny z rodzaju Etmopterus włączają i wyłączają swoją bioluminescencję dzięki trzem hormonom. To pierwszy tego typu przypadek, u innych zwierząt za to samo odpowiadają bowiem neurony (Journal of Experimental Biology).
      W grę wchodzą melatonina, prolaktyna i alfa-melanotropina, które kontrolują też zabarwienie skóry tych ryb. Dzięki najnowszemu odkryciu potwierdza się przypuszczenie wielu biologów, że bioluminescencja pojawiała się w toku ewolucji kilkakrotnie.
      Emitujące światło komórki nie są połączone z pełniącymi istotniejszą rolę skupiskami neuronów. Na nieznany dotąd mechanizm działania wskazywał też wolny "rozruch". Kiedy fragmenty skóry rekinów wystawiono na oddziaływanie hormonów i neuroprzekaźników, udało się potwierdzić, że włącznikami są rzeczywiście te pierwsze. Melatonina powoli wywoływała utrzymujące się przez parę godzin świecenie. Prolaktyna działała znacznie szybciej, ale i świecenie zanikało prędzej, bo po godzinie. Naukowcy przypuszczają, że hormon ten bierze udział w komunikacji, np. podczas szukania partnera. Trzeci z hormonów – alfa-melanotropina - wyłączał luminescencję. W przypadku kilku "pospolitych" neuroprzekaźników nie wystąpił żaden efekt.
      Julien Claes i Jérôme Mallefet z Katolickiego Uniwersytetu w Leuven uważają, że u kolczaków czarnych (Etmopterus spinax) narządy świetlne zapewniają kamuflaż. Podświetlają rybę od dołu, gdy schodzi na większe głębokości.
      Choć melatonina nie jest tak szybka i precyzyjna jak występujące u ryb kostnoszkieletowych mechanizmy kontrolowane przez nerwy, u rekinów doskonale się sprawdza. Zanurzając się, natrafiają na ciemniejsze wody, a skoro melatonina jest tzw. hormonem ciemności, pasuje tu idealnie.
      Claes jak ognia unika uogólnień, ale podejrzewa, że u innych "wyposażonych" w bioluminescencję rekinów fotofory także są uruchamiane przez hormony. Naukowiec już planuje dalszy ciąg badań.
    • przez KopalniaWiedzy.pl
      LIPS (ang. usta) - to akronim nazwy nowoczesnej techniki badawczej, która ma szansę otworzyć nowy rozdział w dziedzinie diagnostyki medycznej. Ze względu na swoją fenomenalną wręcz czułość oraz znikomy odsetek błedów istnieje szansa, że ta nowatorska metoda stanie się w niedalekiej przyszłości standardem stosowanym do wykonania testów, w których wiarygodność wyniku oraz zdolność do wykrycia minimalnych ilości przeciwciał jest kluczowym zadaniem. O szczegółach swojego pomysłu opowiedzieli na łamach czasopisma Biochemical and Biophysical Research Communications jego twórcy, Peter Burbelo i Michael Iadarola.
      Pełna nazwa techniki to Luciferase Immunoprecipitation Technology czyli "technologia immunoprecypitacji z użyciem lucyferazy". Lucyferaza to enzym wystepujący u niektórych zwierząt (w tym wypadku użyto jego odmiany pochodzącej od meduzy Renilla reniformis, lecz występuje on także np. u świetlika), który po dodaniu związku zwanego lucyferyną oraz źródła energii chemicznej wytwarza błękitne światło. Z kolei immunoprecypitacja jest to proces, w którym przeciwciała łączą się w wybiórczy sposób z określoną substancją chemiczną obecną w roztworze, a następnie tworzą wraz z nią nierozpuszczalny kompleks. O ile sama immunoprecypitacja nie jest techniką nową (stosowana jest rutynowo np. do testowania grup krwi), o tyle połączenie jej specyficzności z czułością osiągalną dzięki zastosowaniu lucyferazy daje ogromną poprawę jakości wyników.
      Jak dokładnie działa LIPS? W celu wykonania badania pobiera się od pacjenta próbkę krwi lub śliny, w której chcemy wykryć przeciwciała oraz zmierzyć ich stężenie. Następnie dodajemy do roztworu tzw. antygen (czyli substancję, na którą określony typ przeciwciał reaguje wiążąc ją ze sobą), który dzięki technikom inżynierii genetycznej połączony jest z cząsteczką lucyferazy. W tym momencie przeciwciała, o ile są obecne w próbce, zaczynają wiązać antygen i powodować wspomnianą wcześniej immunoprecypitację. Razem z antygenem z roztworu wytrąca się, oczywiście, związana z nim lucyferaza. Następnie całą objętość próbki przepłukuje się tak, aby usunąć wszystkie cząsteczki niezwiązane z przeciwciałami, tzn. wciąż unoszące się w roztworze (wytrącony osad wciąż pozostaje na dnie naczynia). Na samym końcu do pozostałego kompleksu dodaje się lucyferynę oraz źródło energii (pod postacią związku zwanego ATP) i odczytuje się jasność powstającego światła.
      Oprócz niezwykłej czułości LIPS posiada jeszcze jedną zaletę, zwaną liniowością. Oznacza to, że można precyzyjnie określić wynik w bardzo szerokiej skali, od bardzo niskich do bardzo wysokich stężeń. Przykładowo: stosowane dziś rutynowo techniki potrafią dać wiarygodny wynik w zakresie od 5000 do 15000 jednostek, tymczasem testy oparte o zastosowanie lucyferazy dają wynik w zakresie od zera aż do około miliona, a niejednokrotnie nawet więcej, jednostek.
      Największą wadą metody jest stosunkowo skomplikowany proces produkcji antygenów powiązanych z lucyferazą - można jednak liczyć, że w przypadku upowszechnienia się nowej techniki powstanie szeroki zakres odczynników niezbędnych do przeprowadzania testów w poszukiwaniu wielu różnych przeciwciał.
      Potencjalne zastosowania dla techniki, opracowanej na Uniwersytecie Georgetown przez dr. Petera Burbelo we współpracy z amerykańskim Narodowym Instytutem Zdrowia (NIH), są ogromne. Dzięki niezwykłej czułości testu możliwe będzie np. wykrywanie śladów infekcji wirusowej (w odpowiedzi na zakażenie pojawiają się w osoczu krwi przeciwciała), monitorowanie przebiegu chorób związanych z nieprawidłowym funkcjonowaniem układu odpornościowego (np. stwardnienia rozsianego lub reumatoidalnego zapalenia stawów), a dzięki ewentualnej modyfikacji metody - także różnorodne inne testy w poszukiwaniu ściśle określonych substancji w dowolnego rodzaju próbce.
      Dotychczas badacze skupili się na udoskonaleniu LIPS na potrzeby diagnostyki w tzw. zespole Stiffa-Persona, ciężkim schorzeniu neurologicznym wynikającym z tzw. autoagresji, czyli niepożądanej reakcji układu immunologicznego na własne tkanki. Sami przyznają jednak, że w ramach eksperymentu wytworzyli odczynniki do wykrywania śladów dwudziestu trzech innych chorób. Jak mówi dr Burbelo, Teraz musimy tylko zebrać odpowiednią ilość danych i, miejmy nadzieję, przekształcić je w konkretne wyniki.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...