Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Zwierzęta przybierają na ogół jakieś barwy, by odstraszyć drapieżniki albo się przed nimi ukryć. Okazuje się, że niesymbiotyczne bakterie oceaniczne zachowują się dokładnie na odwrót - świecą, by zwrócić na siebie uwagę, bo zjedzenie stanowi gwarancję rozprzestrzenienia i opanowania nowych okolic.

Margarita Zarubin, studentka z Uniwersytetu Hebrajskiego w Jerozolimie, która wcześniej uczyła się w Oldenburgu, badała bioluminescencyjne bakterie Photobacterium leiognathi. Hipoteza, że mikroby świecą, by zostać upolowane, pojawiła się ponad 30 lat temu, ale bazowała głównie na częstym występowaniu luminescencyjnych bakterii w przewodzie pokarmowym ryb. Nie przeprowadzono eksperymentów, które mogłyby to potwierdzić. Chcąc sprawdzić, "co w morskiej trawie piszczy", izraelski zespół umieścił na jednym końcu akwarium torebkę ze zwykłymi P. leiognathi, a na drugim z bakteriami zmodyfikowanymi genetycznie w taki sposób, by nie mogły świecić. W zbiorniku znajdowały się m.in. artemia (Artemia). Okazało się, że skorupiaki i inne organizmy gromadziły się wokół świecącego woreczka, a koło ciemnego nie.

W kolejnym etapie badań biolodzy pozwolili wszystkim pływać swobodnie. Po paru godzinach odwłoki przedstawicieli zooplanktonu zaczęły świecić. Później świecące artemia zmieszano z osobnikami, które nie jadły P. leiognathi i umieszczono w kanale wodnym z polującymi na nie rybami Apogon annularis. By na filmie było dokładnie widać przebieg zdarzeń, wykorzystano podświetlenie podczerwienią. Okazało się, że nocne ryby polowały wyłącznie na skorupiaki ze świecącymi odwłokami. Po zbadaniu odchodów A. annularis szybko stało się jasne, że bakterie przeszły przez ich przewód pokarmowy bez najmniejszego uszczerbku.

Wykorzystując skorupiaki i ryby, luminescencyjne bakterie nie tylko przemieszczały się po oceanie, ale i pożywiły się przy okazji tym, co znajdowało się w jelitach przewoźnika. To wysoce korzystne przede wszystkim dla bakterii z ubogich w pokarm głębin.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wody oceaniczne na średnich głębokościach (200–1000 m), które są domem dla wielu gatunków ryb, zaczęły w nienaturalnym tempie tracić tlen – ostrzegają chińscy uczeni na łamach pisma Amerykańskiej Unii Geofizycznej. Do roku 2080 aż 70% światowych oceanów może się dusić z powodu braku tlenu spowodowanego zmianami klimatycznymi. Nowe badania pokazały, że w ubiegłym roku doszło do przekroczenia punktu krytycznego utraty tlenu.
      Tlen rozpuszczony w oceanach jest potrzebny żyjącym tam zwierzętom do oddychania. Jednak ogrzewające się wody zawierają mniej tlenu. Naukowcy od lat obserwują powolny spadek ilości tlenu w wodach oceanicznych. Jednak najnowsze badania pokazują, że sytuacja jest bardziej dramatyczna, niż sądzono.
      Autorzy badań opublikowanych na łamach Geophysical Research Letters wykorzystali modele klimatyczne do sprawdzenia, jak i kiedy poziom utraty tlenu w wodach oceanicznych będzie większy niż naturalna zmienność. Okazało się, że na średnich głębokościach do przekroczenia poziomu naturalnej zmienności doszło prawdopodobnie w 2021 roku. Jeśli to prawda, wpłynie to np. na rybołówstwo na całym świecie. Modele przewidują, że do roku 2080 wszystkie strefy oceaniczne doświadczą większej niż naturalna utraty tlenu.
      Na głębokości od 200 do 1000 metrów rozciąga się strefa mezopelagialu. Wiele gatunków komercyjnie poławianych ryb żyje właśnie w tej strefie. Ubytek tlenu oznacza, że ucierpi rybołówstwo i dostawy żywności, nie mówiąc już o stratach środowiskowych.
      Wraz z globalnym ociepleniem rośnie temperatura wód oceanicznych. A w ciepłej wodzie rozpuszcza się mniej tlenu, co z kolei zmniejsza mieszanie się poszczególnych warstw wody. Mezopelagial jest szczególnie wrażliwy na ubytek tlenu, gdyż z jednej strony nie jest wzbogacany tlenem z atmosfery oraz fotosyntezy, jak wyżej położone warstwy, a z drugiej to w nim zachodzi większość zużywających tlen procesów rozkładu glonów.
      Dla nas to bardzo ważna strefa oceanu, gdyż żyje w niej wiele komercyjnie poławianych gatunków ryb. Ubytek tlenu wpływa też na inne morskie zasoby, ale ryby są dla nas najważniejsze i mają największy wpływ na naszą codzienną dietę, mówi główna autorka badań, Yuntao Zhou z Shanghai Jiao Tong University. Oceanograf Matthew Long z amerykańskiego Narodowego Centrum Badań Atmosferycznych (NCAR), który nie brał udziału w badaniach, komentuje, że badania chińskich uczonych pokazują, jak pilna jest potrzeba zapobiegania zmianom klimatu. Ludzkość zmienia obecnie stan metaboliczny największego ekosystemu na planecie, a konsekwencji tej zmiany nie znamy.
      Chińscy naukowcy przyjrzeli się utracie tlenu w epipelagialu (0–200 m), mezopelagialu (200–1000 m) i batypelagialu (1000–4000 m). Poddali analizie matematycznej dane, by sprawdzić, kiedy zmiany w ilości rozpuszczone w nich tlenu będą większe, niż naturalna zmienność. Połączyli je z dwoma modelami klimatycznymi – jednym zakładającym wysoką emisję gazów cieplarnianych przez człowieka i drugim, zakładającym niską emisję.
      W obu zbadanych scenariuszach to właśnie mezopelagial jest tą strefą, która najszybciej traci tlen, a utrata występuje na największym obszarze globalnych oceanów. W scenariuszu niskiej emisji proces utraty ponad naturalną zmienność rozpoczyna się 20 lat później, niż w scenariuszu emisji wysokiej. To zaś pokazuje, że ograniczenie emisji może pomóc w opóźnieniu niekorzystnych zmian.
      Naukowcy zauważyli tez, że oceany położone bliżej biegunów są bardziej narażone na utratę tlenu. Nie wiadomo, dlaczego tak się dzieje, ale może mieć to związek z faktem, że okolice biegunów ocieplają się najszybciej. Dochodzi też do rozszerzania tropikalnych stref znanych z niskiej zawartości tlenu, mówi Zhou. Strefy o minimalnej zawartości tlenu rozprzestrzeniają się na wyższe szerokości geograficzne, zarówno na północ, jak i południe. To zjawisko, na które powinniśmy zwrócić więcej uwagi, stwierdza uczona. Obecnie nie wiadomo, czy gdyby całkowicie udało się powstrzymać globalne ocieplenie, to czy poziom tlenu w oceanach powrócił do epoki przedprzemysłowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Sam strach przed drapieżnikami wystarczy, by populacja ich potencjalnych ofiar zmniejszyła się o połowę w ciągu 5 lat lub mniej. Naukowcy z University of Western Ontario zauważyli, że tam, gdzie występują drapieżniki, gatunki będące ich ofiarami inwestują mniej energii w wychowania potomstwa, zatem mniej młodych osiąga dojrzałość. Mamy tutaj do czynienia z nieznanym wcześniej mechanizmem zapewniającym równowagę w przyrodzie.
      Badania przeprowadzone przez profesor Lianę Zanett oraz Marka Allena i Michaela Clinchy dowodzą, że skupiając się wyłącznie na liczbie zwierząt, jaki jest w stanie zabić drapieżnik, będziemy źle oceniali wpływ drapieżników na ekosystem. Wyniki naszych badań mają olbrzymie znaczenie dla zarządzania środowiskiem, polityki oraz naszej wiedzy o ekosystemie. Na nowo musimy dokonać oceny korzyści wynikających zarówno z zachowania lub przywrócenia populacji rodzimych drapieżników, jak i strat powodowanych przez drapieżniki inwazyjne, mówi Zanette.
      Naukowcy oceniali wpływ strachu przed drapieżnikami na populację szarobrewki śpiewnej. Przez trzy kolejne sezony lęgowe żyjącym na wolności ptakom odtwarzano odgłosy drapieżników oraz zwierząt, które dla szarobrewki nie stanowiły zagrożenia. W każdym roku sprawdzano, jaki wpływ miały wokalizacje na liczbę narodzin i przeżywalność młodych.
      Okazało się, że strach przed drapieżnikami powoduje, że rodzice częściej wypatrują zagrożenia, a w tym czasie nie szukają pożywienia dla siebie i swoich młodych. To zaś powoduje, że pojawiają się skutki negatywne dla całej populacji, które dodatkowo kumulują się w kolejnych generacjach. Gdy dorosłe bały się drapieżników, rodziło się mniej młodych, a z nich mniej dożywało do dorosłości. Ptaki, które dożyły dorosłości żyły zaś krócej, co było prawdopodobnie związane z nieprawidłowościami w rozwoju mózgu. To wskazuje, że strach przed drapieżnikami ma wpływ na wiele pokoleń i sam w sobie prowadzi do zmniejszenia populacji.
      Taki wpływ strachu na wielkość populacji to prawdopodobnie norma wśród ptaków i ssaków, gdyż w rozwoju tych zwierząt opieka rodzicielska odgrywa olbrzymią rolę, a indukowane strachem zmniejszenie inwestycji w rodzicielstwo i opiekę jest czymś normalnym. Sądzimy, że nasze spostrzeżenie, iż strach sam w sobie ma znaczący wpływ na wielkość populacji jest prawdziwe dla większości ekosystemów, mówi Zanette.
      Badania te pokazują, że przetrzebienie przez człowieka drapieżników w negatywny sposób wpływa na populacje ich ofiar, które rozrastają się w sposób niekontrolowany, powodując kolejne problemy. A z kontrolą tych rozrośniętych populacji ludzie sobie nie radzą.
      Co więcej, przywrócenie rodzimych drapieżników ma olbrzymie znaczenie nie tylko dla populacji ich ofiar. Uczeni z Oregon State University zauważyli, że rosnąca na zachodzie USA populacja wilków odgrywa ważną rolę w odradzaniu się zagrożonej populacji rysiów, dzięki zwiększonej liczbie wilków odradzają się też ekosystemy leśne i wodne, co pozytywnie wpływ na wiele gatunków roślin i zwierząt.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jednym z najważniejszych odkryć dokonanych w ciągu ostatnich 25 lat było stwierdzenie, że w Układzie Słonecznym istnieją światy, gdzie pod powierzchnią skał i lodu kryje się ocean. Takimi obiektami są księżyce wielkich planet jak Europa, Tytan czy Enceladus. Teraz S. Alan Stern z Southwest Research Institute przedstawił hipotezę mówiącą, że takie światy z wewnętrznym ciekłym oceanem (IWOW) są powszechne we wszechświecie i znacząco zwiększają one liczbę miejsc, w których może istnieć życie. Dzięki nim może ono bowiem występować poza wąską ekosferą.
      Od dawna wiadomo, że planety takie jak Ziemia, z oceanami na powierzchni, muszą znajdować się w ekosferze swoich gwiazd, czyli w takiej odległości od nich, że gdzie temperatura pozwala na istnienie wody w stanie ciekłym. Jednak IWOW mogą istnieć poza ekosferą. Co więcej, obecne tam życie może być znacznie lepiej chronione niż życie na Ziemi. W światach taki jak nasz życie narażone jest na wiele zagrożeń, od uderzeń asteroidów przez niebezpieczne rozbłyski słoneczne po eksplozje pobliskich supernowych.
      Stern, który zaprezentował swoją hipotez podczas 52. dorocznej Lunar and Planetary Science Conference, zauważa, że światy z wewnętrznym ciekłym oceanem” zapewniają istniejącemu tam życiu lepszą stabilność środowiskową i są mniej narażone na zagrożenia ze strony własnej atmosfery, gwiazdy, układu planetarnego czy galaktyki niż światy takie jak Ziemia, z oceanem na zewnątrz. IWOW są bowiem chronione przez grubą, liczącą nawet dziesiątki kilometrów, warstwę lodu i skał.
      Uczony zauważa ponadto, że warstwa ta chroni potencjalnie obecne tam życie przed wykryciem jakąkolwiek dostępną nam techniką. Jeśli więc w takich światach istnieje życie i jeśli może w nich rozwinąć się inteligentne życie to – jak zauważa Stern – istnienie IWOW pozwala na poradzenie sobie z paradoksem Fermiego. Jego twórca, Enrico Fermi, zwrócił uwagę, że z jednej strony wszystko wskazuje na to, że wszechświat powinien być pełen życia, w tym życia inteligentnego, a my dotychczas nie mamy dowodu na jego istnienie. Ta sama warstwa, która tworzy w takich światach stabilne i bezpieczne środowisko jednocześnie uniemożliwia wykrycie tego życia, mówi Stern.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W 2010 roku japońska ekspedycja naukowa wybrała się do Wiru Południowopacyficznego (South Pacyfic Gyre). Pod nim znajduje się jedna z najbardziej pozbawionych życia pustyń na Ziemi. W pobliżu centrum SPG znajduje się oceaniczny biegun niedostępności. A często najbliżej znajdującymi się ludźmi są... astronauci z Międzynarodowej Stacji Kosmicznej. Tutejsze wody są tak pozbawione życie, że 1 metr osadów tworzy się tutaj przez milion lat.
      Centrum SPG jest niemal nieruchome, jednak wokół niego krążą prądy oceaniczne, przez które do centrum dociera niewiele składników odżywczych. Niewiele więc tutaj organizmów żywych.
      Japońscy naukowcy pobrali z dna, znajdującego się 6000 metrów pod powierzchnią, rdzeń o długości 100 metrów. Mieli więc w nim osady, które gromadziły się przez 100 milionów lat.
      Niedawno poinformowali o wynikach badań rdzenia. Tak, jak się spodziewali, znaleźli w osadach bakterie, było ich jednak niewiele, od 100 do 3000 na centymetr sześcienny osadów. Później jednak nastąpiło coś, czego się nie spodziewali. Po podaniu pożywienia bakterie ożyły.
      Ożyły i zaczęły robić to, co zwykle robią bakterie, mnożyć się. Dwukrotnie zwiększały swoją liczbę co mniej więcej 5 dni. Powoli, gdyż np. bakterie E.coli dwukrotnie zwiększają w laboratorium swoją liczbę co około 20 minut). Jednak wystarczyło to, by po 68 dniach bakterii było 10 000 razy więcej niż pierwotnie.
      Weźmy przy tym pod uwagę, że mówimy o bakteriach sprzed 100 milionów lat. O mikroorganizmach, które żyły, gdy planeta była opanowana przez dinozaury. Minęły cztery ery geologiczne, a one – chronione przed promieniowaniem kosmicznym i innymi wpływami środowiska przez kilometry wody – czekały w uśpieniu.
      Jeśli teraz uświadomimy sobie, że 70% powierzchni planety jest pokryte osadami morskimi, możemy przypuszczać, że znajduje się w nich wiele nieznanych nam, uśpionych mikroorganizmów sprzed milionów lat.
      Kolejną niespodzianką był fakt, że znalezione przez Japończyków bakterie korzystają z tlenu. Osady, z których je wyodrębniono, są pełne tlenu. Problemem w SPG nie jest zatem dostępność tlenu, a pożywienia.
      To jednak nie koniec zaskoczeń. Okazało się, że wydobyte z osadów bakterie nie tworzą przetrwalników (endosporów). Bakterie przetrwały w inny sposób. Jeszcze większą niespodzianką było znalezienie w jednej z próbek dobrze funkcjonującej populacji cyjanobakterii z rodzaju Chroococcidiopsis. To bakterie potrzebujące światłą, więc zagadką jest, jak przetrwały 13 milionów lat w morskich osadach na głębokości 6000 metrów. Z drugiej strony wiemy, że jest niektórzy przedstawiciele tego rodzaju są wyjątkowo odporni. Tak odporny, że niektórzy mówią o wykorzystaniu ich do terraformowania Marsa.
      Biorąc uwagę niewielkie przestrzenie z powietrzem wewnątrz osadów, brak endosporów i szybkie ożywienie, naukowcy przypuszczają, że bakterie pozostały żywe przez 100 milionów lat, jednak znacząco spowolniły swój cykl życiowy. To zaś może oznaczać, że... są nieśmiertelne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Drapieżniki żyjące w pobliżu ludzi mogą nawet połowę pożywienia czerpać ze źródeł pochodzących od ludzi. To, jak obawiają się naukowcy z University of Wisconsin-Madison, może mieć destrukcyjny wpływ na środowisko naturalne.
      Uczeni badali dietę siedmiu gatunków drapieżników żyjących w regionie Wielkich Jezior. Zbierali kości i próbki futra zarówno z odległych terenów parków narodowych, jak i z terenów miejskich. Stwierdzili, że im bliżej człowieka żyje drapieżnik, w tym większym stopniu polega na pożywieniu pochodzącym od ludzi.
      Ewolucja spowodowała, że badane gatunki konkurują o różne źródła pożywienia. Jednak w momencie, gdy w znacznym stopniu żywią się tym, co pochodzi od ludzi, zaczynają w większym stopniu konkurowac między sobą. To może zmienić stosunki zarówno pomiędzy drapieżnikami, jak i drapieżnikami a ich dotychczasowymi ofiarami. Nie wiadomo, jaki będzie to miało wpływ na ekosystem, jednak naukowcy obawiają się, że niekorzystny, gdyż ekosystemy ewoluowały pod silną presją tych drapieżników.
      O tym, jak bardzo drapieżniki polegały na diecie pochodzącej od człowieka, decydowało kilka czynników. Tam, gdzie zwierzęta żyły w najbardziej zmienionym przez człowieka środowisku, średnio ponad 25% pożywienia czerpały ze źródeł od człowieka.
      Widoczna była też różnica pomiędzy gatunkami. Tak zdeklarowany drapieżnik jak ryś rudy w niewielkim stopniu polegał na diecie z ludzkich źródeł. Ale widoczne jest, że gatunki bardziej oportunistyczne, jak kojoty, lisy, kuna rybożerna czy kuna, jeśli mieszkały blisko ludzi, to z takich źródeł mogły czerpać nawet ponad 50% pożywienia, mówi główny autor badań, Phil Manlick. To szokująco wysoki odsetek.
      Naukowcy zauważają, że poleganie na diecie ze źródeł pochodzących od człowieka powoduje, że drapieżniki bardziej niż w naturze konkurują ze sobą o źródła pożywienia. To może prowadzić do większej liczby konfliktów pomiędzy nimi. Ponadto czyni je łatwiejszym celem dla człowieka oraz może zmienić sposób, w jaki polują one na swoje tradycyjne ofiary, co z kolei może mieć niekorzystny wpływ na środowisko naturalne.
      Naukowcy zbadali dietę niemal 700 przedstawicieli różnych gatunków.  Porównywali ją w zależności od gatunku oraz odległości od ludzkich siedzib. Określenie diety możliwe było dzięki badaniom izotopów węgla zawartych w futrze i szczątkach zwierząt. Izotopy naprawdę powodują, że jesteś tym, co jesz. Jeśli przyjrzymy się ludziom, to przekonamy się, że nasz skład izotopowy jest podobny do składu kukurydzy, mówi Manlick. Dzieje się tak, gdyż pożywiamy się roślinami oraz zwierzętami jedzącymi rośliny.
      Ludzie pożywienie, pełne kukurydzy i cukru, ma charakterystyczny skład izotopowy. Organizmy zwierząt, które je spożywają, wchłaniają te izotopy. Z kolei drapieżniki żywiące się dziko żyjącymi roślinożercami, mają inny skład izotopowy.
      Bardzo szeroki zakres geograficzny i gatunkowy przeprowadzonych badań wskazuje, że trend do zastępowania diety naturalnej dietą pochodzącą od człowieka, nie jest ograniczony do konkretnego gatunku czy konkretnej lokalizacji. Nie wiadomo, jak wpływa to na ekosystem.
      Gdy drastycznie zmienisz jeden z najważniejszych aspektów dla danego gatunku – jego źródło pożywienia – przyniesie to nieznane konsekwencje całej strukturze ekosystemu. Na nas, jako ekologach i biologach, leży obowiązek zrozumienia tego nowego ekosystemu oraz określenia, kto na tym wygra, a kto przegra, dodaje profesor Jon Pauli.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...