Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Atmosfera Marsa przesycona wodą

Recommended Posts

Dane zgromadzone przez należącą do Europejskiej Agencji Kosmicznej sondę Mars Express wskazują, że w atmosferze Czerwonej Planety znajduje się woda w postaci roztworu przesyconego. Zdumiewające odkrycie pozwoli lepiej zrozumieć obieg wody na Marsie oraz historię atmosfery tej planety.

Gdy w atmosferze Ziemi znajduje się zbyt duża ilość wody, dochodzi do jej kondensacji i opadów. Czasami jednak, gdy brak jest jąder kondensacji, para wodna utrzymuje się a atmosferze, mimo iż w występujących warunkach temperatury i ciśnienia powinna opaść. Mówimy wówczas o wystąpieniu roztworu przesyconego, czyli roztworu o wyższym stężeniu od roztworu nasyconego.

Dotychczas uważano, że w atmosferze Marsa takie zjawisko nie zachodzi. Dopiero teraz spektrometr SPICAM odkrył wodę w stanie przesyconym w atmosferze planety.

SPICAM tworzy pionowy przekrój atmosfery obserwując, w jaki sposób promienie słoneczne przechodzą przez atmosferę podczas wschodów i zachodów Słońca.

Badania takie wykazały, że występowanie wody w stanie przesyconym jest bardzo częstym zjawiskiem w atmosferze Marsa. Niejednokrotnie takiej wody było nawet 10-krotnie więcej niż w atmosferze Ziemi. Znajdująca się w atmosferze woda w stanie wysoce przesyconym może posłużyć na przykład do zaopatrzenia w wodę południowej półkuli Marsa. Byłaby to metoda znacznie bardziej efektywna niż inne, opracowane na podstawie dotychczasowych modeli komputerowych - stwierdził Franck Montmessin odpowiedzialny za instrument SPICAM.

Odkrycie wskazuje też, że znacznie większe ilości wody niż dotychczas sądzono mogą być transportowane na duże wysokości, na których dochodzi do jej fotodysocjacji. To mogłaby sugerować, że woda przez miliardy lat uciekała z Marsa, dlatego też obecnie znajdujemy jej tak niewiele.

Share this post


Link to post
Share on other sites

Użycie terminu "woda" niezależnie od kontekstu może wprowadzać w błąd, sugerując występowanie w atmosferze fazy ciekłej wody, zwykle widocznej jako chmury. Tymczasem w artykule jednoznacznie stwierdza się występowanie fazy gazowej, czyli pary wodnej, choć termin ten został użyty tylko jeden raz.

Operowanie terminami "roztwór" i "stan przesycony" kojarzy się zwykle z omawianiem roztworu ciekłego, czyli z nawiązaniem do krystalizacji. Aby uniknąć błędnego skojarzenia, w artykule w kontekście roztworu i stanu przesyconego z zasady powinna być wymieniona para wodna, a woda występować tylko w kontekście ogólnym. Użycie terminu "roztwór gazowy" nie da takiej precyzji, bo istnieją roztwory gazowe cieczy i ciał stałych.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Analiza danych z misji InSight wykazała, że jądro Marsa jest całkowicie płynne. Ma więc inną budowę niż jądro Ziemi, gdzie stałe jądro wewnętrzne otoczone jest przez płynne jądro zewnętrzne. Dotychczas nikt nie był w stanie stwierdzić, jaki jest stan skupienia jądra Czerwonej Planety. Udało się to dopiero uczonym z USA, Belgii, Niemiec i Francji, którzy podczas swoich badań wykorzystali dane z InSight.
      Zrozumienie struktury wewnętrznej oraz atmosfery Marsa jest niezbędne do opisania historii tworzenia się i ewolucji planety. Wysłana w 2018 roku InSight zebrała unikatowe dane na temat jej budowy zewnętrznej. Misja zakończyła się w grudniu ubiegłego roku, ale naukowcy z całego świata wciąż analizują przysłane przez nią dane.
      Na ich podstawie badacze stwierdzili, że pod płaszczem, które w całości jest ciałem stałym, znajduje się jądro o średnicy 1835 ± 55 km i średniej gęstości 5955–6290 kg/m3. Nasze analizy danych z InSight stanowią argument przeciwko istnieniu stałego jądra wewnętrznego i pokazują kształt jądra wskazując, że głęboko w płaszczu istnieją wewnętrzne anomalie masy. Znaleźliśmy też dowody na powolny wzrost tempa ruchu obrotowego Marsa, który może być powodowany długoterminowym trendem w wewnętrznej dynamice Marsa lub wpływem jego atmosfery i pokryw lodowych, czytamy w artykule opublikowanym na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ponad połowa największych jezior na świecie traci wodę, wynika z badań przeprowadzonych przez międzynarodowy zespół naukowy z USA, Francji i Arabii Saudyjskiej. Przyczynami tego stanu rzeczy są głównie globalne ocieplenie oraz niezrównoważona konsumpcja przez człowieka. Jednak, jak zauważają autorzy badań, dzięki opracowanej przez nich nowej metodzie szacunku zasobów wody, trendów oraz przyczyn jej ubywania, można dostarczyć osobom odpowiedzialnym za zarządzanie informacji, pozwalającymi na lepszą ochronę krytycznych źródeł wody.
      Przeprowadziliśmy pierwsze wszechstronne badania trendów oraz przyczyn zmian ilości wody w światowych jeziorach, wykorzystując w tym celu satelity oraz modele obliczeniowe, mówi główny autor badań, Fangfang Yao z Uniwersytetu Kalifornijskiego w Boulder (CU Boulder). Mamy dość dobre informacje o słynnych jeziorach, jak Morze Kaspijskie, Jezioro Aralskie czy Salton Sea, jeśli jednak chcemy dokonać szacunków w skali globalnej, potrzebujemy wiarygodnych informacji o poziomie wód i objętości jeziora. Dzięki tej nowej metodzie możemy szerzej spojrzeć na zmiany poziomu wód jezior w skali całej planety, dodaje profesor Balaji Rajagopalan z CU Boulder.
      Naukowcy wykorzystali 250 000 fotografii jezior wykonanych przez satelity w latach 1992–2020. Na ich podstawie obliczyli powierzchnię 1972 największych jezior na Ziemi. Użyli też długoterminowych danych z pomiarów poziomu wód z dziewięciu satelitów. W przypadku tych jezior, co do których brak było danych długoterminowych, wykorzystano pomiary wykorzystane za pomocą bardziej nowoczesnego sprzętu umieszczonego na satelitach. Dzięki połączeniu nowych danych z długoterminowymi trendami byli w stanie ocenić zmiany ilości wody w jeziorach na przestrzeni kilku dziesięcioleci.
      Badania pokazały, że 53% największych jezior na świecie traci wodę, a jej łączny ubytek jest 17-krotnie większy niż pojemność największego zbiornika na terenie USA, Lake Meads. Wynosi zatem około 560 km3 wody.
      Uczeni przyjrzeli się też przyczynom utraty tej wody. W przypadku około 100 wielkich jezior przyczynami były zmiany klimatu oraz konsumpcja przez człowieka. Dzięki tym badaniom naukowcy dopiero teraz dowiedzieli się, że za utratą wody w jeziorze Good-e-Zareh w Afganistanie czy Mar Chiquita w Argentynie stoją właśnie takie przyczyny. Wśród innych ważnych przyczyn naukowcy wymieniają też odkładanie się osadów. Odgrywa ono szczególnie ważną rolę w zbiornikach, które zostały napełnione przed 1992 rokiem. Tam zmniejszanie się poziomu wody jest spowodowane głównie zamuleniem.
      Podczas gdy w większości jezior i zbiorników wody jest coraz mniej, aż 24% z nich doświadczyło znacznych wzrostów ilości wody. Są to głównie zbiorniki znajdujące się na słabo zaludnionych terenach Tybetu i północnych części Wielkich Równin oraz nowe zbiorniki wybudowane w basenach Mekongu czy Nilu.
      Autorzy badań szacują, że około 2 miliardów ludzi mieszka na obszarach, gdzie w zbiornikach i jeziorach ubywa wody, co wskazuje na pilną potrzebę uwzględnienia takich elementów jak zmiany klimatu, konsumpcja przez człowieka czy zamulanie w prowadzonej polityce. Jeśli na przykład konsumpcja przez człowieka jest ważnym czynnikiem prowadzącym do utraty wody, trzeba wprowadzić mechanizmy, które ją ograniczą, mówi profesor Ben Livneh. Uczony przypomina jezioro Sevan w Armenii, w którym od 20 lat poziom wody rośnie. Autorzy badań łączą ten wzrost z wprowadzonymi i egzekwowanymi od początku wieku przepisami dotyczącymi sposobu korzystania z wód jeziora.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Weteran badań Marsa, łazik Curiosity, od pewnego czasu wykonuje zdjęcia chmur na Czerwonej Planecie. Niedawno przysłał na Ziemię wyjątkowe obrazy, w tym pierwszą sfotografowaną na Marsie tak wyraźną śreżogę, czyli promienie słoneczne przeświecające przez warstwę chmur.
      Większość chmur na Marsie znajduje się na wysokości nie większej niż 60 km. Jednak chmury na najnowszych obrazach wydają się być znacznie wyżej, gdzie jest wyjątkowo zimno. Dlatego naukowcy przypuszczają, że tworzy je zamarznięty dwutlenek węgla.
      Obserwując kiedy, gdzie i na jakich wysokościach formują się marsjańskie chmury, naukowcy mogą dowiedzieć się więcej na temat składu atmosfery Czerwonej Planety, jej temperatury oraz wiejących w niej wiatrów.
      Przed kilkoma tygodniami łazik sfotografował nawet chmury iryzujące. Iryzacja oznacza, że cząstki znajdujące się w danej części chmury są identycznej wielkości. Patrząc na zmiany koloru, widzimy zmiany wielkości cząstek, a to pokazuje nam ewolucję chmury w czasie, wyjaśnia Mark Lemmon ze Space Science Institute w Boulder.
      Łazik Curiosity trafił na Marsa w sierpniu 2012 roku. Pracuje w kraterze Gale i dotychczas przebył ponad 29 kilometrów po powierzchni Czerwonej Planety. Bada tam pierwiastki niezbędne do powstania życia, poszukuje śladów procesów biologicznych, przygląda się składowi powierzchni Marsa, prowadzi badania ewolucji atmosfery, obiegu wody i promieniowania na powierzchni planety. To czwarty z pięciu łazików, jakie NASA wysłała na Marsa i, obok Perseverance, jeden z dwóch obecnie działających.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Systemy podtrzymywania życia, woda, żywność, habitaty, instrumenty naukowe i wiele innych elementów będzie niezbędnych do przeprowadzenia załogowej misji na Marsa. Jednym z najważniejszych z nich są systemy produkcji energii. Te obecnie stosowane w misjach kosmicznych są albo niebezpieczne – wykorzystują rozpad pierwiastków promieniotwórczych – albo też niestabilne wraz ze zmianami pór dnia i roku, bo korzystają z energii słonecznej.
      Wybór miejsca lądowania każdej z misji marsjańskich to skomplikowany proces. Eksperci muszą bowiem określić miejsca, których zbadanie może przynieść jak najwięcej korzyści i w których w ogóle da się wylądować. W przypadku misji załogowych sytuacja jeszcze bardziej się skomplikuje, gdyż dodatkowo będą musiały być to miejsca najlepiej nadające się do życia, np. takie, w których można pozyskać wodę.
      Grupa naukowców pracujących pod kierunkiem Victorii Hartwick z NASA wykorzystała najnowsze modele klimatyczne Marsa do przeanalizowania potencjału produkcji energii z wiatru na Czerwonej Planecie. Dotychczas podczas rozważań nad produkcją energii na Marsie nie brano pod uwagę atmosfery. Jest ona bowiem bardzo rzadka w porównaniu z atmosferą Ziemi.
      Ku swojemu zdumieniu naukowcy zauważyli, że pomimo rzadkiej marsjańskiej atmosfery wiejące tam wiatry są na tyle silne, by zapewnić produkcję energii na dużych obszarach Marsa.
      Badacze odkryli, że w niektórych proponowanych miejscach lądowania prędkość wiatru jest wystarczająca, by stanowił on jedyne lub uzupełniające – wraz z energią słoneczną bądź jądrową – źródło energii. Pewne regiony Marsa są pod tym względem obiecujące, a inne – interesujące z naukowego punktu widzenia – należałoby wykluczyć biorąc pod uwagę jedynie potencjał energii wiatrowej lub słonecznej. Okazało się jednak, że energia z wiatru może kompensować dobową i sezonową zmienność produkcji energii słonecznej, szczególnie na średnich szerokościach geograficznych czy podczas regionalnych burz piaskowych. Co zaś najważniejsze, proponowane turbiny wiatrowe zapewnią znacznie bardziej stabilne źródło energii po połączeniu ich z ogniwami fotowoltaicznymi.
      Naukowcy przeanalizowali hipotetyczny system, w którym wykorzystane zostają panele słoneczne oraz turbina Enercon E33. To średniej wielkości komercyjny system o średnicy wirnika wynoszącej 33 metry. Na Ziemi może ona dostarczyć 330 kW mocy. Z analiz wynika, że na Marsie dostarczałaby średnio 10 kW.
      Obecnie szacuje się, że 6-osobowa misja załogowa będzie potrzebowała na Marsie minimum 24 kW mocy. Jeśli wykorzystamy wyłącznie ogniwa słoneczne, produkcja energii na potrzeby takiej misji będzie większa od minimum tylko przez 40% czasu. Jeśli zaś dodamy turbinę wiatrową, to odsetek ten wzrośnie do 60–90 procent na znacznych obszarach Marsa. Połączenie wykorzystania energii słonecznej i wiatrowej mogłoby pozwolić na przeprowadzenie misji załogowej na tych obszarach Czerwonej Planety, które wykluczono ze względu na słabą obecność promieniowania słonecznego. Te regiony to np. obszary polarne, które są interesujące z naukowego punktu widzenia i zawierają wodę.
      Autorzy badań zachęcają do prowadzenia prac nad przystosowaniem turbin wiatrowych do pracy w warunkach marsjańskich. Tym bardziej, że wykorzystanie wiatru może wpłynąć na produkcję energii w wielu miejscach przestrzeni kosmicznej. Hartwick mówi, że jest szczególnie zainteresowana potencjałem produkcji energii z wiatru w takich miejscach jak Tytan, księżyc Saturna, który posiada gęstą atmosferę, ale jest zimny. Odpowiedź na tego typu pytania będzie jednak wymagała przeprowadzenia wielu badań interdyscyplinarnych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed rokiem, 24 grudnia,  pracujący na Marsie lądownik InSight zarejestrował trzęsienie o magnitudzie 4. Dopiero później udało się ustalić, że przyczyną trzęsienia był jeden z największych zaobserwowanych upadków meteorytów. Teraz na łamach Science opisano wyniki badań.
      Przyczynę trzęsienia udało się ustalić po przeanalizowaniu zdjęć wykonanych przed trzęsieniem i po nim przez Mars Reconnaissance Orbiter (MRO). Na fotografiach widać nowy krater uderzeniowy. Stało się to rzadką okazją do zbadania upadku meteorytu i wywołanego nim trzęsienia na Marsie.
      Naukowcy oceniają, że meteoroid, który spadł na Czerwoną Planetę, miał od 5 do 12 metrów średnicy. Taki obiekt spłonąłby w ziemskiej atmosferze, jednak atmosfera Marsa jest około 100-krotnie rzadsza, więc nie uchroniła swojej planety przed uderzeniem. W wyniku kolizji powstał krater o średnicy 150 i głębokości 21 metrów. Część wyrzuconego zeń materiału wylądowała 37 kilometrów dalej. Dzięki danym sejsmologicznym z InSight oraz zdjęciom wiemy, że to jeden z największych kraterów, jaki utworzył się na oczach człowieka w Układzie Słonecznym.
      Oczywiście na Marsie znajduje się olbrzymia liczba większych kraterów, jednak powstały one przed jakąkolwiek misją na Czerwoną Planetę. Co jednak niezwykle interesujące, w wyniku uderzenia na powierzchnię wyrzucony zostały duże kawałki lodu, który był pogrzebany bliżej marsjańskiego równika niż lód, jaki mieliśmy okazję dotychczas oglądać. Ma to znaczenie dla planowania przyszłych misji załogowych.
      Misja InSight od listopada 2018 roku bada wnętrze Marsa. Zmierzyła m.in. średnicę jego jądra. Głównym źródłem informacji na temat budowy wnętrza Czerwonej Planety są fale sejsmiczne, dzięki którym można poznać rozmiary, skład oraz głębokość, na jakiej znajdują się poszczególne jej warstwy. Od rozpoczęcia badań InSight wykrył 1318 trzęsień, z których część była spowodowana upadkami meteorytów. Jednak trzęsienie z grudnia ubiegłego roku było pierwszym, przy którym wystąpiły fale powierzchniowe, które pozwoliły na szczegółowe badanie skorupy Marsa.
      Niestety, misja InSight wkrótce dobiegnie końca. W ciągu ostatnich miesięcy na panelach słonecznych lądownika nagromadziło się dużo pyłu, więc drastycznie spadła ilość docierającej doń energii. Najprawdopodobniej za około 6 tygodni InSight się wyłączy.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...