Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Multishot Magnet bliski osiągnięcia natężenia 100 tesli

Rekomendowane odpowiedzi

Naukowcy z Los Alamos National Laboratory ustanowili nowy rekord natężenia pola magnetycznego uzyskanego za pomocą magnesów, które nie ulegają zniszczeniu podczas wytwarzania takiego pola. Najpierw, 18 sierpnia, osiągnęli natężenie rzędu 92,5 tesli, bijąc niemiecki rekord, który wynosił 91,4 tesli, a następnego dnia uzyskali na krótką chwilę pole o natężeniu 97,4 tesli.

Możliwość uzyskania impulsów pola magnetycznego o niezwykle wysokim natężeniu pozwala na przeprowadzenie wielu istotnych eksperymentów z dziedziny materiałoznawstwa. Co prawda wcześniej uzyskiwano już znacznie większe natężenia pola magnetycznego, ale albo używano przy tym magnesów, które natychmiast ulegały zniszczeniu, albo też wykorzystywano materiały wybuchowe, co wykluczało prowadzenie innych eksperymentów.

Teraz powstał system, który jest zdolny do wielokrotnego generowania pola o silnym natężeniu magnetycznym. Będzie on świetnym uzupełnieniem systemu magnesów z Florydy, które przez długi czas potrafią generować pole o natężeniu 25 tesli.

Uczeni z Los Alamos myślą o przekroczeniu „magicznej" granicy 100 tesli, do osiągnięcia której od wielu lat dążą zespoły w Niemiec, Chin, Francji czy Japonii.

Potężne pola magnetyczne pozwalają na „zajrzenie" w głąb materiałów i poznanie ich właściwości kwantowych.

Multishot Magnet z Los Alamos zasilany jest przez generator o mocy 1,4 gigawata, a w jego zwojach płynie prąd o energii przekraczającej 100 megadżuli.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Uczeni z Los Alamos myślą o przekroczeniu „magicznej" granicy 100 tesli

 

Myślę, że 'psychologiczna granica' brzmi lepiej, a 'magii' raczej nie po drodze z nauką :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A ja mam takie trywialne pytanie..

Co się dzieje z dowolnym organizmem żywym jeśli poddalibyśmy go tak dużym natężeniom ? ma ktoś na ten temat wiedzę ;>

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wieloletnie badania wykazały że z organizmami żywymi pod natężeniem 100 tesli dzieje się tak :

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"prąd o energii przekraczającej 100 megadżuli" ?

czyli np. prąd o natężeniu 1 A przy napięciu 100 V płynący 12 dni:

12*24*3600 s * 100 V * 1 A = 103,68 MJ

 

Kiedy zaczniemy mierzyć odległości w metrach kwadratowych?

:-D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po dziesięcioleciach udało się odkryć ambipolarne (dwukierunkowe) pole elektryczne Ziemi. To słabe pole elektryczne naszej planety, które jest tak podstawową jej cechą jak grawitacja czy pola magnetyczne. Hipoteza o istnieniu takiego pola pojawiła się ponad 60 lat temu i od tamtego czasu poszukiwano tego pola. Jest ono kluczowym mechanizmem napędzającym „wiatr polarny”, czyli ucieczkę naładowanych cząstek z ziemskiej atmosfery w przestrzeń kosmiczną. Ma ona miejsce nad ziemskimi biegunami.
      „Wiatr polarny” został odkryty w latach 60. XX wieku. Od samego początku naukowcy uważali, że jego siłą napędową jest nieznane pole elektryczne. Uważano, że jest ono generowane w skali subatomowej i jest niezwykle słabe. Przez kolejnych kilkadziesiąt lat ludzkość nie dysponowała narzędziami, które mogły zarejestrować takie pole.
      W 2016 roku Glyn Collinson i jego zespół z Goddars Space Flight Center zaczęli pracować nad instrumentami zdolnymi do zmierzenia ambipolarnego pola elektrycznego. Stworzone przez nich urządzenia oraz metoda pomiaru zakładały przeprowadzenie badań za pomocą rakiety suborbitalnej wystrzelonej z Arktyki. Badacze nazwali swoją misję Endurance, na cześć statku, którym Ernest Shackleton popłynął w 1914 roku na swoją słynną wyprawę na Antarktykę. Rakietę postanowiono wystrzelić ze Svalbardu, gdzie znajduje się najbardziej na północ wysunięty kosmodrom. Svalbard to jedyny kosmodrom na świecie, z którego można wystartować, by przelecieć przez wiatr polarny i dokonać koniecznych pomiarów, mówi współautorka badań, Suzie Imber z University of Leicester.
      Misja Endurance została wystrzelona 11 maja 2022 roku. Rakieta osiągnęła wysokość 768,03 km i 19 minut później spadła do Morza Grenlandzkiego. Urządzenia pokładowe zbierały dane przez 518 kilometrów nabierania wysokości i zanotowały w tej przestrzeni zmianę potencjału elektrycznego o 0,55 wolta. Pół wolta to tyle co nic, to napięcie baterii w zegarku. Ale to dokładnie tyle, ile trzeba do napędzenia wiatru polarnego, wyjaśnia Collinson.
      Generowane pole elektryczne oddziałuje na jony wodoru, które dominują w wietrze polarnym, z siłą 10,6-krotnie większą niż grawitacja. To więcej niż trzeba, by pokonać grawitację. To wystarczająco dużo, by wystrzelić jony z prędkością naddźwiękową prosto w przestrzeń kosmiczną, dodaje Alex Glocer z NASA. Pole napędza też cięższe pierwiastki, jak jony tlenu. Z badań wynika, że dzięki obecności tego pola elektrycznego jonosfera jest na dużej wysokości o 271% bardziej gęsta, niż byłaby bez niego. Mamy tutaj rodzaj taśmociągu, podnoszącego atmosferę do góry, dodaje Collinson.
      Pole to nazwano ambipolarnym (dwukierunkowym), gdyż działa w obie strony. Opadające pod wpływem grawitacji jony ciągną elektrony w dół, a w tym samym czasie elektrony – próbując uciec w przestrzeń kosmiczną – ciągną jony w górę. Wskutek tego wysokość atmosfery zwiększa się, a część jonów trafia na wystarczającą wysokość, by uciec w przestrzen kosmiczną w postaci wiatru polarnego.
      Odkrycie ambipolarnego pola elektrycznego otwiera przed nauką nowe pola badawcze. Jest ono bowiem, obok grawitacji i pola magnetycznego, podstawowym polem energetycznym otaczającym naszą planetę, wciąż wpływa na ewolucję naszej atmosfery w sposób, który dopiero teraz możemy badać. Co więcej, każda planeta posiadająca atmosferę powinna mieć też ambipolarne pole elektryczne. Można więc będzie go szukać i badać na Marsie czy Wenus.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Intensywność pola magnetycznego Ziemi zmniejsza się od około 200 lat. Proces ten przebiega na tyle szybko, że niektórzy naukowcy ogłosili, iż w ciągu 2000 lat dojdzie do zamiany biegunów magnetycznych. Przebiegunowanie mogłoby spowodować, że przez kilka tysięcy lat Ziemia byłaby gorzej chroniona przed szkodliwym promieniowaniem kosmicznym i słonecznym. To z kolei doprowadziłoby do poważnych zakłóceń i awarii sprzętu elektronicznego, wzrostu przypadków zachorowań na nowotwory i zwiększenia się liczby mutacji genetycznych. Niewykluczone, że ucierpiałyby też te gatunki zwierząt, które w swoich migracjach orientują się wedle pola magnetycznego.
      Naukowcy z MIT-u opublikowali na łamach PNAS artykuł opisujący wyniki ich badań nad stanem pola magnetycznego planety. Ich zdaniem przebiegunowanie nie grozi nam w najbliższym czasie. Uczeni obliczyli średnią intensywność stabilnego ziemskiego pola magnetycznego na przestrzeni ostatnich 5 milionów lat i odkryli, że obecnie pole to jest dwukrotnie bardziej intensywne niż średnia z tego okresu. To oznacza, że minie jeszcze sporo czasu, zanim pole magnetyczne planety stanie się niestabilne i dojdzie do przebiegunowania. To olbrzymia różnica, czy dzisiejsze pole magnetyczne jest takie jak średnia długoterminowa czy też jest powyżej średniej. Teraz wiemy, że nawet jeśli intensywność pola magnetycznego Ziemi się zmniejsza to jeszcze przez długi czas będzie się ono znajdowało w bezpiecznym zakresie - mówi Huapei Wang, główny autor badań.
      Z innych badań wiemy, że w przeszłości wielokrotnie dochodziło do przebiegunowania naszej planety. Jest to jednak proces bardzo nieregularny. Czasami przez 40 milionów lat nie było przebiegunowania, a czasem bieguny zmieniały się 10-krotnie w ciągu miliona lat. Średni czas pomiędzy przebiegunowaniami wynosi kilkaset tysięcy lat. Ostatnie przebiegunowanie miało miejsce około 780 000 lat temu, zatem średnia już została przekroczona - dodaje Wang.
      Sygnałem nadchodzącego przebiegunowania jest znaczący spadek poniżej średniej długoterminowej intensywności pola magnetycznego. To wskazuje, że stanie się ono niestabilne. Zarówno z badań terenowych jak i satelitarnych mamy dobre dane dotyczące ostatnich 200 lat. Mówiąc o przeszłości musimy opierać się na mniej pewnych szacunkach.
      Grupa Wanga zdobywała informacje o przeszłości ziemskiego pola magnetycznego badając skały wyrzucone przez wulkany na Galapagos. To idealne miejsce, gdyż wyspy położone są na równiku. Stabilne pole magnetyczne jest dipolem, jego intensywność powinna być taka sama na obu biegunach, a na równiku powinna być o połowę mniejsza. Wang stwierdził, że jeśli pozna historyczną intensywność pola magnetycznego na równiku i na biegunach uzyska dokładne dane na temat średniej historycznej intensywności. Sam zdobył próbki z Galapagos, a próbki z Antarktyki dostarczyli mu naukowcy ze Scripps Institution of Oceanography. Naukowcy najpierw zmierzyli naturalny magnetyzm skał. Następnie podgrzali je i ochłodzili w obecności pola magnetycznego i zmierzyli ich magnetyzm po ochłodzeniu. Naturalny magnetyzm skał jest proporcjonalny do pola magnetycznego, w którym stygły. Dzięki eksperymentom naukowcy byli w stanie obliczyć średnią historyczną intensywność pola magnetycznego. Wynosiła ona około 15 mikrotesli na równiku i 30 mikrotesli na biegunach. Dzisiejsza intensywność wynosi zaś, odpowiednio, 30 i 60 mikrotesli. To oznacza, że dzisiejsza intensywność jest nienormalnie wysoka i jeśli nawet ona spadnie, to będzie to spadek do długoterminowej średniej, a nie ze średniej do zera, stwierdza Wang.
      Uczony uważa, że naukowcy, którzy postulowali nadchodzące przebiegunowanie opierali się na wadliwych danych. Pochodziły one z różnych szerokości geograficznych, ale nie z równika. Dopiero Wang wziął pod uwagę dane z równika. Ponadto odkrył, że w przeszłości źle rozumiano sposób, w jaki w skałach pozostaje zapisana informacja o ziemskim magnetyzmie. Z tego też powodu przyjęto błędne założenie. Uznano, że gdy poszczególne ferromagnetyczne ziarna w skałach ulegały schłodzeniu spiny elektronów przyjmowały tę samą orientację, z której można było odczytać intensywność pola magnetycznego. Teraz wiemy, że jest to prawdą ale tylko do pewnej ograniczonej wielkości ziaren. Gdy są one większe spiny elektronów w różnych częściach ziarna przyjmują różną orientację. Wang opracował więc metodę korekty tego zjawiska i zastosował ją przy badaniach skał z Galapagos.
      Wang przyznaje, że nie wie, kiedy dojdzie do kolejnego przebiegunowania. Jeśli założymy, że utrzyma się obecny spadek, to za 1000 lat intensywność pola magnetycznego będzie odpowiadała średniej długoterminowej. Wówczas może zacząć się zwiększać. Tak naprawdę nie istnieje sposób, by przewidzieć, co się stanie. Proces magnetohydrodynamiczny ma bowiem chaotyczną naturę".

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Elon Musk potwierdził, że rosyjski cyberprzestępca próbował przekupić jednego z pracowników firmy, by ten zainstalował ransomware w sieci firmowej Gigafactory w Newadzie. Próbę ataku podjął 27-letni Jegor Igorewicz Kriuczkow, który zaoferował anonimowemu pracownikowi Tesli milion dolarów za zainfekowanie systemu. Jeśli do infekcji by doszło, Kriuczkow i jego wspólnicy mogliby przeprowadzić atak DDoS na system Tesli.
      Szczegóły całej operacji poznaliśmy dzięki dokumentom ujawnionym przez FBI po aresztowaniu Kriuczkowa. Z dokumentów wynika, że Kriuczkow przyjechał do USA jako turysta w lipcu bieżącego roku. Wybrał się do miejscowości Sparks w Newadzie, gdzie znajduje się Gigafactory, i wynajął pokój hotelowy. Tam wielokrotnie spotkał się z mówiącym po rosyjsku pracownikiem fabryki. W czasie jednego ze spotkań zaoferował mu pieniądze za wprowadzenie malware'u do sieci. Pracownik zgodził się, a po rozmowie natychmiast poinformował o tym przedstawicieli firmy. Ci z kolei skontaktowali się z FBI. W sierpniu Biuro rozpoczęło tajną operację. W jej ramach pracownik nadal spotykał się z Kriuczkowem, tym razem jednak miał przy sobie podsłuch. Podczas kilku kolejnych spotkań omawiali sposób ataku oraz wynagrodzenie dla pracownika.
      Zainstalowane malware miało rozpocząć atak DDoS, który zaalarmowałby systemy bezpieczeństwa i odwrócił uwagę informatyków Tesli. W tym czasie Kriuczkow i jego kompani chcieli ukraść poufne informacje, za zwrot których zażądaliby sowitego okupu. Przestępcy najwyraźniej spodziewali się sporych zysków, skoro oferowali aż milion USD za zainfekowanie systemu firmy Muska.
      Kriuczkow został aresztowany 22 sierpnia w Los Angeles, gdy próbował opuścić USA. Postawiono mu zarzuty konspirowania z zamiarem celowego spowodowania szkód w chronionym systemie komputerowym. Za przestępstwo to grozi do 5 lat więzienia oraz wysoka grzywna.
      FBI stwierdziło, że Kriuczkow jest jednym z członków rosyjskiej grupy cyberprzestępczej, która już w przeszłości atakowała amerykańskie firmy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Toyota czy Volkswagen sprzedają wielokrotnie więcej samochodów niż Tesla, ale to firma Muska ma coś, czego mogą jej pozazdrościć konkurenci i co może całkowicie zmienić krajobraz motoryzacji. Tym czymś jest Hardware 3, najnowszy komputer sterujący stosowany w nowych pojazdach Model 3, Model S i Model X.
      Analitycy z Nikkei Asian Review uważają, że o 6 lat wyprzedza on najlepsze osiągnięcia konkurencji. Inżynier jednego z dużych japońskich producentów motoryzacyjnych, który pracował w zespole analizującym budowę samochodów Tesli, po zapoznaniu się z Hardware 3 stwierdził nie możemy zrobić czegoś takiego.
      Hardware 3 składa się z dwóch układów scalonych sztucznej inteligencji autorstwa Tesli. Komputer odpowiada zarówno za całą autonomię samochodu, jak i za jego środowisko informatyczne. Eksperci uważają, że tak zaawansowany sprzęt upowszechni się w przemyśle motoryzacyjnym nie wcześniej niż w 2025 roku.
      Hardware 3 to efekt ewolucji Autopilota, który zadebiutował w 2014 roku. System, zwany wówczas Hardware 1, był w stanie podążać za innymi samochodami, głównie na autostradach i automatycznie trzymać się swojego pasa ruchu. Co 2-3 lata Tesla dokonywała poważnych udoskonaleń swojego systemu, aż powstał Hardware 3.
      Tacy giganci jak Toyota czy Volkswagen, z ich olbrzymim zapleczem inżynieryjnym i zasobami finansowymi, nie powinni mieć problemu w opracowaniu do roku 2025 podobnie zaawansowanego komputera sterującego samochodem.
      Jednak nie kwestie finansowe wchodzą tu w grę. Zdaniem inżyniera, który wypowiedział przytoczone powyżej zdanie nie możemy tego zrobić, problem leży w tym, że producenci samochodów obawiają się, iż komputery takie, jak zastosowane przez Teslę mogą spowodować, że cały łańcuch dostaw, który budowali i udoskonalali przez dziesięciolecia, stanie się przestarzały i niepotrzebny.
      System Tesli znacznie zmniejsza zapotrzebowanie na elektroniczne moduły sterujące (ECU) w samochodzie. Niektóre z nowoczesnych samochodów są wyposażone nawet w 80 ECU. Jeśli przemysł motoryzacyjny zmniejszyłby ich liczbę to, biorąc pod uwagę roczną sprzedaż samej tylko Toyoty i Volkswagena, zapotrzebowanie na ECU mogłoby spaść o setki milionów sztuk rocznie. Dla wielu producentów tych podzespołów oznaczałoby to bankructwo.
      Dlatego też wielkie koncerny motoryzacyjne czują się zobowiązane do używania złożonego systemu dziesiątków ECU, podczas gdy w Model 3 Tesli takich modułów jest zaledwie kilka. Patrząc na to z innej perspektywy możemy stwierdzić, że poddostawcy, którzy w przeszłości umożliwili wzrost i innowacje gigantom rynku motoryzacyjnego, teraz hamują te innowacje.
      Nowe firmy, takie jak Tesla, nie są tak bardzo powiązane z dostawcami, mają więc większą swobodę działania.
      Analiza Nikkei Asian Review ujawniła kolejną interesującą cechę tesli. Okazuje się, że na większości części w Model 3 nie ma nazwy dostawcy. wiele z nich ma logo Tesli. To wskazuje, że koncern Muska ściśle kontroluje prace nad niemal każdym elementem pojazdu. Ma więc olbrzymią swobodę w tym zakresie. A gdy samochód wyposażony jest w odpowiedni sprzęt, dokładnie taki, jaki od początku do końca wymyślił jego producent, można go na przykład... zdalnie udoskonalić.
      W tej chwili pojazdy Tesli są oficjalnie klasyfikowane jako należące do kategorii Level 2, czyli uznawane są za „częściowo autonomiczne”. Jednak Elon Musk twierdzi, że posiadają wszystko, co niezbędne, by być całkowicie autonomicznymi. A to oznacza, że wystarczy zgoda odpowiednich urzędów oraz zgoda użytkownika, by już teraz produkowane samochody zdalnie zaktualizować i uczynić z nich w pełni autonomiczne pojazdy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Amerykańscy urzędnicy zastanawiają się, czy wszcząć formalne dochodzenie w sprawie... samodzielnie przyspieszających samochodów Tesli. Do Narodowej Administracji Bezpieczeństwa Ruchu Drogowego (NHTSA) wpłynął wniosek o przyjrzenie się 500 000 pojazdów tej marki.
      Autorzy dokumentu proszą o zbadanie Model S z lat 2012–2019, Model X z lat 2016–2019 oraz Model 3 z lat 2018–2019. Powołują się przy tym na 127 skarg dotyczących 123 pojazdów, jakie wpłynęły do NHTSA. Nagłe niespodziewane przyspieszenia miały przyczynić się do 110 wypadków, w których rannych zostały 52 osoby.
      W wielu takich doniesieniach jest mowa o tym, że samochód nagle przyspieszał, gdy użytkownik próbował zaparkować w garażu lub na jezdni. W jednym przypadku właściciel Model S 85D z 2015 roku donosi, że wysiadł z samochodu, zamknął go, gdy nagle pojazd przyspieszył i uderzył w zaparkowany przed nim samochód. Z kolei kierowca z Pennsylwanii skarży się, że parkował pod szkołą, kiedy pojazd zaczął szybciej jechać, przejechał przez krawężnik i zatrzymał się na łańcuchu. Właścicielka tesli z Massachusetts opisuje, jak zbliżała się do swojego garażu, a samochód przyspieszył, przejechał przez zamknięte drzwi i zatrzymał sie na ścianie.
      To nie jedyne skargi na pojazdy Tesli. W maju ubiegłego roku Tesla wydała poprawkę do oprogramowania zarządzajęcego akumulatorami, gdyż w wyniku błędu istniało ryzyko ich pożaru. We wrześniu właściciele 2000 takich pojazdów złożyli wniosek, by Tesla wymieniła samochody, a nie ograniczała się do poprawki w oprogramowaniu. NHTSA wciąż rozważa ten wniosek. Ponadto w ubiegłym tygodniu NHTSA poinformowała, że prowdzi śledztwo w sprawie wypadku z 29 grudnia, kiedy to tesla wjechała w zaparkowany wóz strażacki. Śmierć poniósł pasażer samochodu.  To 14. śledztwo prowadzone w ramach specjalnego programu NHTSA powołanego do badania wypadków mających miejsce, gdy włączony jest Autopilot lub inny zaawansowany mechanizm wspomagający kierowcę.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...