Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Olejek kolendrowy na zatrucia i lekooporność

Recommended Posts

Olejek kolendrowy zabija lub przynajmniej ogranicza wzrost wielu groźnych bakterii, w tym metycylinoopornego gronkowca złocistego (MRSA od ang. meticillin-resistant Staphylococcus aureus) czy pałeczki okrężnicy (Escherichia coli). Oznacza to, że dodanie olejku do produktów spożywczych może ograniczyć częstość zatruć pokarmowych, o spadku lekooporności nie wspominając.

Naukowcy z Universidade da Beira Interior przetestowali olejek kolendrowy na 12 szczepach bakteryjnych, m.in. E. coli, Salmonella enterica, Bacillus cereus i MRSA. Okazało się, że po zastosowaniu roztworów 1,6-proc. i słabszych u wszystkich szczepów nastąpiło ograniczenie wzrostu, a większość bakterii została zabita.

Najwięcej olejku eterycznego występuje w owocach kolendry – do 1,5%. Jego składniki wpływają na organizm na wiele sposobów, np. żółciopędnie i żółciotwórczo. Olejek przyspiesza akcję serca i rozszerza obwodowe naczynia krwionośne, poprawiając ukrwienie rąk i nóg. Rozszerza też drogi oddechowe. Zielarze cenią go ze względu na działanie przeciwbakteryjne, przeciwwirusowe, przeciwgrzybiczne i antyzapalne. Dotąd w przemyśle spożywczym olejek kolendrowy wykorzystywano do aromatyzowania konserw rybnych, na podstawie portugalskich badań widać jednak, że lista jego zastosowań na pewno się wydłuży.

Na czym polega przeciwbakteryjne działanie olejku z kolendry siewnej? Wyniki pokazują, że olejek kolendrowy uszkadza błonę otaczającą komórkę bakteryjną. Bariera między wnętrzem komórki a środowiskiem zewnętrznym zostaje przerwana, dochodzi też do zaburzenia podstawowych procesów życiowych, w tym oddychania, co ostatecznie prowadzi do śmierci mikroba – wyjaśnia dr Fernanda Domingues.

W krajach rozwiniętych rocznie z powodu zatruć pokarmowych cierpi do 30% populacji. Nasze badanie stanowi zachętę do opracowania nowych dodatków żywnościowych zawierających olejek kolendrowy, które zapobiegałyby nie tylko zatruciom, ale i psuciu się żywności. Olejek mógłby także być alternatywą dla powszechnie stosowanych antybiotyków. Przewidujemy, że w praktyce klinicznej będzie się go stosować w postaci balsamów, płynów do płukania ust czy nawet tabletek.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Superbakteria MRSA – gronkowiec złocisty oporny na metycylinę – to jedno z najpoważniejszych zagrożeń w systemie opieki zdrowotnej. Szczepy MRSA są oporne na wiele antybiotyków. U osób zdrowych wywołują zwykle problemy skórne. Jednak dla osób osłabionych mogą stanowić śmiertelne zagrożenie. MRSA wywołują wiele poważnych infekcji wewnątrzszpitalnych. To najbardziej znani przedstawiciele rozrastającej się rodziny „koszmarnych bakterii”.
      Pierwszy szczep MRSA zidentyfikowano w 1960 roku w Wielkiej Brytanii. W samej Europie powoduje obecnie około 171 000 poważnych infekcji rocznie. Dotychczas sądzono, że przyczyną pojawienia się superbakterii było używanie antybiotyków. Okazuje się jednak, że MRSA mogły pojawić się już 200 lat temu. A to potwierdza wnioski z przeprowadzonych przed 9 laty badań, których autorzy zauważyli, że antybiotykooporność może pojawić się bez kontaktu z antybiotykami.
      Międzynarodowy zespół naukowy, prowadzony przez specjalistów z University of Cambridge, znalazł dowody, że MRSA pojawił się w naturze już 200 lat temu, na długo zanim na masową skalę zaczęliśmy używać antybiotyków u ludzi i w hodowli zwierząt. Zdaniem naukowców oporność na antybiotyki pojawiła się u gronkowca złocistego (Staphylococcus aureus), żyjącego na skórze jeży, na której żyły też grzyby z gatunku Trichophyton erinacei. Grzyby te wytwarzają własne antybiotyki. Na skórze jeży spotkały się więc dwa organizmy, które zaczęły toczyć walkę o przetrwanie.
      To gorzkie przypomnienie, że gdy używamy antybiotyków, powinniśmy robić to rozważnie. W naturze istnieją wielkie rezerwuary, w których mogą przetrwać bakterie oporne na antybiotyki. Z tych rezerwuarów jest bardzo krótka droga do zwierząt hodowlanych, a od nich do ludzi, mówi doktor Mark Homles, jeden z autorów artykułu Emergence of methicillin resistance predates the clinical use of antibiotics, w którym opisano wyniki badań.
      Zostały one przeprowadzone przez wielki zespół naukowy, w skład którego weszli specjaliści z Wielkiej Brytanii, Danii, Szwecji, Hiszpanii, Czech, Francji, Finlandii, Niemiec, USA i Szwajcarii.
      Badania postanowiono rozpocząć, kiedy okazało się, że wiele jeży w Danii i Szwecji jest nosicielami MRSA z genem mecC (mecC-MRSA). To jeden z genów dających bakterii oporność na antybiotyki. mecC-MRSA został po raz pierwszy odkryty u krów mlecznych, a następnie u ludzi, co sugerowało, że do pojawienia się opornego na metycylinę gronkowca złocistego doszło w wyniku powszechnego stosowania antybiotyków u zwierząt hodowlanych, a następnie bakteria przeszła na ludzi. Kolejne badania pokazały, że mecC-MRSA występuje u wielu innych gatunków zwierząt hodowlanych w całej Europie, ale nie tak często, jak u krów. To tylko potwierdziło przypuszczenia, co do źródła pochodzenia superbakterii.
      Jednak odkrycie szerokiego występowania meC-MRSA u jeży skłoniło naukowców do bliższego przyjrzenia się tej kwestii. Autorzy postawili więc hipotezę o naturalnym pochodzeniu MRSA, a wsparciem dla niej były badania przeprowadzone wcześniej w północno-zachodniej Europie i w Nowej Zelandii, z których wiemy, że skóra jeży jest często skolonizowana przez T. erinacei, który wytwarza substancję podobną do penicyliny.
      By sprawdzić hipotezę o naturalnym pochodzeniu MRSA, jej pojawieniu się u jeży i związku pomiędzy MRSA a T. erinacei, naukowcy przeprowadzili szczegółowe badania 244 próbek gronkowca złocistego (S. aureus) pobranych od jeży w Europie i Nowej Zelandii oraz 913 próbek S. aureus pochodzących z innych źródeł. Na tej podstawie spróbowali odtworzyć historię ewolucyjną, dynamikę rozprzestrzeniania się oraz potencjał zoonotyczny mecC-MRSA, czyli zdolność patogenu zwierzęcego do zarażenia ludzi. Badano też potencjał do wystąpienia naturalnej selekcji mecC-MRSA w kierunku antybiotykoopornosci w wyniku oddziaływania T. erinacei.
      Nasze badania wykazały, że jeże są naturalnym rezerwuarem zoonotycznych linii mecC-MRSA, którego pojawienie się poprzedza epokę antybiotyków. To przeczy powszechnie przyjętemu poglądowi, jakoby szeroka antybiotykooporność to fenomen współczesny, który jest napędzany przez wykorzystywanie antybiotyków w medycynie i weterynarii, czytamy w podsumowaniu badań.
      Wykazały one, na przykład, że w Danii mecC-MRSA występuje znacznie częściej u jeży niż u zwierząt hodowlanych, a liczba przypadków zakażeń w tym kraju jest niska. Ponadto większość linii mecC-MRSA brakuje genetycznych markerów adaptacji do infekowania ludzi i przeżuwaczy. Wyraźnym wyjątkiem jest tutaj linia CC425:B3.1, która w Anglii południowo-zachodniej przeszła z jeży na krowy mleczne. Przed naszymi badaniami uważano, że krowy mleczne są najbardziej prawdopodobnym rezerwuarem mecC-MRSA i głównym źródłem zoonozy u ludzi. [...] Obecne badania wskazują, że większość linii rozwojowych mecC-MRSA bierze swój początek u jeży, a krowy mleczne i inne zwierzęta hodowlane prawdopodobnie są pośrednikiem i wektorem zoonotycznych transmisji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gronkowiec złocisty oporny na metycylinę (MRSA) to jedno z największych zagrożeń w szpitalach. Łatwo się rozprzestrzenia i jest trudny w leczeniu, powodując zakażenia szpitalne.
      Na szczęście powstała nowa metoda walki z nim, w której nie używa się antybiotyków. Zamiast nich wykorzystuje się światło do aktywowania tlenu, który zabija antybiotykooporną bakterię. Niewykluczone, że taka metoda zadziała nie tylko na inne bakterie, ale również przyda się w leczeniu nowotworów.
      "Zamiast antybiotyków, które nie działają przeciwko MSRA i niektórym innym bakteriom, używamy fotouczulacza, zwykle molekuł barwnika, które zostają pobudzone pod wpływem światła. Fotouczulacz zmienia tlen w reaktywne formy tlenu, które atakują bakterię", mówi doktor Peng Zhang.
      Już wcześniej inne zespoły naukowe próbowały podobnego podejścia, jednak nie udawało się zniszczyć wystarczająco wielu mikroorganizmów, by powstrzymać infekcję. Wiele z nich było też hydrofobowych, przez co truno było je rozprzestrzenić w środowisku, w którym zwykle występuja mikroorganizmy. Zhang, doktor Neil Ayers i ich zespół z University of Cincinnati opracowali nowy hybrydowy fotouczulacz, który dobrze rozprowadza się w wodzie. Zbudowali go z nanocząstek metalu szlachetnego pokrytych polimerami amfifilowymi, które wyłapują molekularne fotouczulacze.
      Naukowcy wykazali, że taka struktura znacznie skuteczniej zabija bakterie niż inne fotouczulacze, które nie zawierały metalu. Jak mówi Zhang, zastosowanie metalu powoduje powstanie efektu plazmonicznego, dzięki czemu tlen staje się jeszcze bardziej reaktywny, po drugie zaś pozwala na lepsze skupienie fotouczulacza w danym miejscu, przez co silniej działa on na bakterie. Jeśli chcesz zaatakować zamek i twoi rycerze atakują go pojedynczo, to nie jest to efektywny sposób na jego zdobycie. Lepiej zgromadzić ich w jednym miejscu i w nim zaatakować grupą. Można dzięki temu poczynić więcej szkód, wyjaśnia Zhang.
      Nowy fotouczulacz, który występuje w formie spraju lub żelu, został już opatentowany. Teraz trwają prace nad jego komercjalizacją. Jak zapewnia Zhang, po pokryciu odkażanej powierzchni sprajem, wystarczy oświetlić ją światłem czerwonym lub niebieskim, by zabić występujące tam bakterie, w tym MRSA. Niewykluczone, że w ten sposób można będzie też odkażać rany i wspomagać gojenie. Naukowcy przeprowadzili bowiem eksperymenty laboratoryjne, które wykazały, że ich fotouczulacz nie zabija komórek ludzkiej skóry. Okazało się też, że można w ten sposób leczyć grzybicę paznokci. Zdaniem Zhanga, nowa metoda przyda się również do zwalczania nowotworów skóry. Działa bowiem ze światłem czerwonym, które jest w stanie głęboko penetrować skórę.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy opracowali nanocząstki z chitozanem, które zwalczają zarówno pałeczki okrężnicy (Escherichia coli), jak i gronkowce Staphylococcus saprophyticus. Niewykluczone więc, że wejdą one w skład materiałów do opatrywania ran, które będą wspomagać leczenie i chronić przed zakażeniami oportunistycznymi.
      Nanocząstki z chiotozanem uzyskano za pomocą żelacji jonowej tripolifosforanem sodu (TPFS). TPFS odpowiada za tworzenie wiązań między łańcuchami biopolimeru. Nanocząstki można też uzyskiwać w obecności jonów miedzi i srebra, a jak wiadomo, mają one działanie bakteriobójcze. Ponieważ stymulując wzrost komórek, kompozyt działał też regenerująco na skórę - ustalono to podczas laboratoryjnych testów na keratynocytach i fibroblastach - warto pomyśleć o zastosowaniach w materiałach opatrunkowych i kosmetykach przeciwstarzeniowych.
      Pracami zespołu kierowała Mihaela Leonida z Fairleigh Dickinson University. Artykuł z wynikami badań ukazał się w International Journal of Nano and Biomaterials.
      Chitozan jest polisacharydem, pochodną chityny. Charakteryzuje się biozgodnością i nietoksycznością. Nie wywołuje reakcji alergicznych. Enzymy tkankowe rozkładają go do w pełni absorbowanych przez organizm aminosacharydów. Biopolimer polikationowy wykorzystuje się w stomatologii do walki z próchnicą (pod koniec lat 90. prowadzono np. badania nad zastosowaniem chitozanu jako składnika optymalizującego cechy systemów łączących kompozyty z zębiną, polisacharyd wchodzi też w skład past do zębów) oraz w opakowaniach w przemyśle spożywczym (w przeszłości ustalono, że folie z chitozanu z dodatkiem olejku czosnkowego działają bakteriobójczo na szczepy Staphylococcus aureus, L. monocytogenes, E. coli czy Salmonella enteritidis). Warto też dodać, że testowano tkaniny przeciwbakteryjne z dodatkiem chitozanu, z których byłyby szyte uniformy dla pracowników służby zdrowia.
    • By KopalniaWiedzy.pl
      Osoby będące nosicielami Helicobacter pylori wydają się chronione przed chorobami, w których przebiegu występuje biegunka.
      Zespół doktor Dani Cohen z Uniwersytetu w Tel Awiwie analizował przypadki 177 izraelskich żołnierzy w wieku od 18 do 21 lat, którzy odwiedzili obozową klinikę. U 66 stwierdzono obecność Shigella sonnei (pałeczki te wywołują dyzenterię), u 31 enterotoksycznych szczepów pałeczki okrężnicy (Escherichia coli), a u 80 występowała biegunka o nieustalonej etiologii. W studium naukowcy uwzględnili także 418-osobową grupę kontrolną. Jej przedstawicieli dopasowano do członków grupy eksperymentalnej pod względem jednostki i okresu szkolenia. Na początku treningu polowego od wszystkich pobrano próbki surowicy. Badano je pod kątem obecności immunoglobulin G (IgG) przeciwko H. pylori oraz IgG i IgA przeciw lipopolisacharydom S. sonnei.
      W porównaniu do grupy kontrolnej, odsetek osób zakażonych H. pylori był znacznie niższy zarówno wśród żołnierzy z biegunką o nieznanej etiologii, jak i w grupie z szigelozą i wynosił w obu scenariuszach 36,3% (vs. 56% wśród nieuskarżających się na biegunki). Związek między nosicielstwem H. pylori a rzadszym występowaniem biegunek utrzymywał się nawet po uwzględnieniu czynników demograficznych oraz wcześniejszego miana przeciwciał IgG oraz IgA przeciw S. sonnei. Izraelczycy podkreślają, że w przypadku enterotoksycznych szczepów pałeczki okrężnicy zależność miała podobny charakter, ale nie przekroczyła progu istotności statystycznej.
      Nasze badania sugerują aktywną rolę H. pylori w ochronie przeciw chorobom biegunkowym - napisała Cohen w artykule opublikowanym w piśmie Clinical Infectious Diseases. Zakażenie H. pylori może wpływać na kwasowość przewodu pokarmowego, a wysoka kwasowość nie dopuszcza do zasiedlenia jelit przez patogeny. Niewykluczone też, że pobudzenie układu odpornościowego w wyniku przewlekłej infekcji H. pylori prowadzi do szybszego wyeliminowania innych bakterii.
    • By KopalniaWiedzy.pl
      Czy bakterie się starzeją? Kiedyś uważano, że nie, a przynajmniej nie w takim sensie jak inne organizmy, ponieważ dzieląc się na komórki potomne, tworzą klony i wiecznie młodą populację. Okazuje się jednak, że to nieprawda i przekazując jednej z córek więcej uszkodzeń, a drugiej mniej, bakterie manipulują sprawnością ewolucyjną całej populacji (Current Biology).
      Starzenie organizmu jest często powodowane przez akumulację niegenetycznych uszkodzeń, np. utlenionych białek. Która z dwóch alternatyw jest lepsza dla jednokomórkowego organizmu, u którego pojawiło się nienaprawialne uszkodzenie: podzielić uszkodzenia komórkowe po równo między komórki potomne czy przydzielić jednej z nich całość uszkodzeń? - pyta prof. Lin Chao z Uniwersytetu Kalifornijskiego w San Diego.
      Okazuje się, że bakterie wybrały drugą opcję. Wydają się przekazywać jednej z córek więcej uszkodzeń (to bakteria postarzona), a drugiej mniej (biolodzy nazywają to odmłodzeniem). Chao oraz Camilla Rang i Annie Peng doszli do takiego wniosku dzięki analizie komputerowej dwóch eksperymentalnych studiów z 2005 i 2010 r. Wtedy nie udało się rozstrzygnąć, czy bakterie starzeją się, czy nie, bo studium sprzed 5 lat wskazywało, że tak, a to z 2010 r., w którym wykorzystano bardziej zaawansowaną aparaturę i zebrano więcej danych, sugerowało, że nie.
      W ramach naszych modeli komputerowych przeanalizowaliśmy dane z obu publikacji i odkryliśmy, że w rzeczywistości pokazują tę samą rzecz. W populacji bakteryjnej starzenie i odmładzanie zachodzą jednocześnie, więc przez sposób, w jaki to mierzysz, możesz zacząć wierzyć, że nie ma starzenia.
      W oddzielnym badaniu naukowcy z San Diego sfilmowali pałeczki okrężnicy, które dzieliły się przez kilkaset pokoleń. Potwierdzili, że Escherichia coli dzielą się za każdym razem na komórki potomne wydłużające się w różnym tempie. Sugeruje to, że jedna z córek odziedziczyła niemal wszystkie uszkodzenia komórkowe, a druga niewiele bądź wcale.
      Modele komputerowe pokazały, że przekazanie jednej z komórek potomnych większej części uszkodzeń jest korzystne z perspektywy ewolucyjnej. Spostrzeżenie, że komórki potomne E. coli nie osiągają tej samej długości, sprawiło, że biolodzy uznali, że bakterie nie dzielą się na tak symetryczne części, jak wcześniej sądzono. W bakteryjnej komórce musi [zatem] istnieć jakiś mechanizm aktywnego transportu, który przenosi niegenetyczne uszkodzenia do jednej z komórek potomnych - podsumowuje Chao.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...