Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Skuteczne lekarstwo na wirusy?

Rekomendowane odpowiedzi

Obecnie używane antybiotyki są dość skuteczne w walce z bakteriami, ale nie radzą sobie z infekcjami wirusowymi. Stąd też mimo olbrzymiego postępu medycyny wciąż pozostajemy bezradni wobec grypy czy gorączek krwotocznych.

Tymczasem naukowcy z należącego do MIT-u Lincoln Laboratory opracowali lekarstwo, które potrafi odnaleźć, zidentyfikować i zabić komórki zarażone wirusem, doprowadzając w ten sposób do zakończenia infekcji. Przeprowadzono już testy na 15 wirusach, w tym m.in. na wirusie polio, dengi, grypy H1N1 i wykazano, że lekarstwo skutecznie zwalcza je wszystkie.

Teoretycznie powinno to działać na wszystkie wirusy - mówi Todd Rider, jeden z odkrywców nowej metody walki z wirusami. Działa ona dzięki temu, że lekarstwo bierze na celownik pewien typ RNA, który powstaje tylko w komórkach zarażonych wirusem.

Gdy wirus zaraża komórkę, zaczyna ją wykorzystywać do własnych celów. By to zrobić, produkuje długie nici podwójnego RNA (dsRNA - double-stranded RNA), które w sposób naturalny nie występują w organizmie człowieka i zwierząt.

Komórki, broniąc się przed infekcją, produkują proteiny DRACO (Double-stranded RNA Activated Caspase Oligomerizers) łączące się z dsRNA, których zadaniem jest uniemożliwienie namnażania się wirusa. Jednak wiele wirusów potrafi ominąć te „zabezpieczenia".

Rider wpadł na pomysł, by połączyć proteiny blokujące dsRNA z proteinami rozpoczynającymi proces apoptozy komórek. Dzięki temu, gdy jeden koniec DRACO łączy się z dsRNA z drugiego końca wysyłany jest sygnał rozpoczynający apoptozę.

Prace swoich kolegów chwali Karla Kirkegaard, profesor biologii i immunologii na Uniwersytecie Stanforda. Wirusy bardzo efektywnie rozwijają oporność na leki, którymi próbujemy je zwalczać. Jednak w tym przypadku trudno wyobrazić sobie prostą metodę nabycia oporności - mówi uczona.

Dotychczas większość badań nowej metody przeprowadzono na kulturach komórek wyhodowanych w laboratorium. Jednak badano również DRACO na myszach zarażonych H1N1. Po leczeniu z udziałem DRACO myszy całkowicie pozbyły się wirusa z organizmu. Badania wykazały też, że DRACO nie jest dla nich toksyczne.

Obecnie nowa metoda jest testowana na kolejnych wirusach.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Super wieści, bardzo ciekawe - przecież to potencjalnie może być odkrycie większe od penicyliny czy antybiotyków! Ciekawy jestem, jak to się dalej rozwinie...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Super wieści, bardzo ciekawe - przecież to potencjalnie może być odkrycie większe od penicyliny czy antybiotyków! Ciekawy jestem, jak to się dalej rozwinie...

 

Stosując spiskową teorię dziejów... nie rozwinie się. "Niestety doskonale zapowiadające się lekarstwo na wirusy okazało się toksyczne/szkodliwe/powodujące poważne skutki uboczne/etc." :)

 

To tak jakbyś chciał wymyślić niepsujący się samochód albo lekarstwo na raka... szaleniec! :P

 

radar

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wirusolodzy od dawna wiedzą o niezwykłym zjawisku dotyczącym wirusów atakujących drogi oddechowe. Dla patogenów tych naturalnym środowiskiem są ciepłe i wilgotne drogi oddechowe. Ich względna wilgotność wynosi zwykle 100%. Wystawienie na bardziej suche powietrze poza organizmem powinno szybko niszczyć wirusy. Jednak wykres czasu ich przeżywalności w powietrzu układa się w literę U.
      Przy wysokiej wilgotności wirus może przetrwać dość długo, gdy wilgotność spada, czas ten ulega skróceniu, ale w pewnym momencie trend się odwraca i wraz ze spadającą wilgotnością powietrza czas przetrwania wirusów... zaczyna się wydłużać.
      Naukowcy od dawna zastanawiali się, dlaczego przeżywalność wirusów zaczyna rosnąć, gdy względna wilgotność powietrza zmniejszy się do 50–80 procent. Odpowiedzią mogą być przejścia fazowe w ośrodku, w którym znajdują się wirusy. Ray Davis i jego koledzy z Trinity University w Teksanie zauważyli, że w bogatych w białka aerozole i krople – a wirusy składają się z białek – w pewnym momencie wraz ze spadkiem wilgotności zachodzą zmiany strukturalne.
      Jedna z dotychczasowych hipotez wyjaśniających kształt wykresu przeżywalności wirusów w powietrzu o zmiennej wilgotności przypisywała ten fenomen zjawisku, w wyniku którego związki nieorganiczne znajdujące się w kropli, w której są wirusy, w miarę odparowywania wody migrują na zewnątrz kropli, krystalizują i tworzą w ten sposób powłokę ochronną wokół wirusów.
      Davis i jego zespół badali aerozole i kropelki złożone z soli i białek, modelowych składników dróg oddechowych. Były one umieszczone na specjalnym podłożu wykorzystywanym do badania możliwości przeżycia patogenów.
      Okazało się, że poniżej 53-procentowej wilgotności krople badanych płynów tworzyły złożone wydłużone kształty. Pod mikroskopem było zaś widać, że doszło do rozdzielenia frakcji płynnej i stałej. Zdaniem naukowców, to dowód na przemianę fazową, podczas której jony wapnia łączą się z proteinami, tworząc żel. Zauważono jednak pewną subtelną różnicę. O ile w aerozolach do przemiany takiej dochodzi w ciągu sekund, dzięki czemu wirusy mogą przeżyć, to w większych kroplach proces ten zachodzi wolnej i zanim dojdzie do chroniącego wirusy przejścia fazowego, patogeny mogą zginąć.
      Naukowcy sądzą, że kluczowym elementem dla zdolności przeżycia wirusów, które wydostały się z dróg oddechowych, jest skład organiczny kropli i aerozoli. Ten zaś może zależeć od choroby i stopnia jej zaawansowania. Następnym etapem prac nad tym zagadnieniem powinno być systematyczne sprawdzenie składu różnych kropli oraz wirusów w nich obecnych, co pozwoli zrozumieć, jak działa proces dezaktywacji wirusów w powietrzu, mówi Davis.
      Zdaniem eksperta od aerozoli, Petera Raynora z University of Minnesota, badania takie można będzie w praktyce wykorzystać np. zapewniając odpowiedni poziom wilgotności powietrza w budynkach w zimie, nie tylko dla komfortu ludzi, ale również po to, by stworzyć najmniej korzystne warunki dla przetrwania wirusów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2025 roku Stany Zjednoczone chcą umieścić powyżej niskiej orbity okołoziemskiej pojazd wyposażony w jądrowy napęd termiczny (NTP – nuclear thermal propulsion). Takie są założenia programu DRACO (Demonstration Rocket for Agile Cislunar Operations) prowadzonego przez DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).
      DARPA ogłosiła właśnie, że wybrała trzech wykonawców do pierwszej fazy DRACO. Zostali nimi General Atomics, Blue Origin i Lockheed Martin.
      Celem projektu jest stworzenie napędu pozwalającego na szybkie manewrowanie, przede wszystkim przyspieszanie i zwalnianie, w przestrzeni kosmicznej. Obecnie dysponujemy pojazdami, które są w stanie dokonywać szybkich manewrów na lądzie, w wodzie i powietrzu. Jednak w przestrzeni kosmicznej brakuje nam takich możliwości. Obecnie używane kosmiczne systemy napędowe – elektryczne i chemiczne – mają spore ograniczenia. W przypadku napędów elektrycznych ograniczeniem jest stosunek siły ciągu do wagi napędu, w przypadku zaś napędów chemicznych ograniczeni jesteśmy wydajnością paliwa. Napęd
      DRACO NTP ma łączyć zalety obu wykorzystywanych obecnie napędów. Ma posiadać wysoki stosunek ciągu do wagi charakterystyczny dla napędów chemicznych oraz być wydajnym tak,jak napędy elektryczne. Dzięki temu w przestrzeni pomiędzy Ziemią a Księżycem DRACO ma być zdolny do szybkich manewrów.
      Zespoły, które wybraliśmy do realizacji pierwszego etapu programu wykazały, że posiadają wszystko, czego potrzeba do zaprojektowania i zbudowania zaawansowanego reaktora, systemu napędowego i innych potrzebnych podzespołów pojazdu kosmicznego, mówi major Nathan Greiner z US Air Force, kierujący projektem DRACO. Technologia, którą tworzymy w ramach projektu DRACO ma być podstawą przyszłych misji kosmicznych.
      Faza 1. projektu potrwa przez 18 miesięcy i będzie składała się z dwóch etapów. Podczas etapu A firmy mają przedstawić wstępny projekt reaktora i systemu napędowego NTP. W etapie B zaprezentują koncepcję systemu operacyjnego pojazdu, który wypełni postawione przed nim zadania oraz koncepcję systemu demonstracyjnego samego pojazdu.
      Pierwsza faza projektu DRACO ma zminimalizować ryzyko, dzięki czemu będziemy w stanie szybko przystąpić do przygotowania w kolejnych fazach demonstracji na orbicie, wyjaśnia Greiner.
      Nad etapem A ma pracować General Atomics, natomiast prace nad etapem B zlecono Blue Origin i Lockheedowi Martinowi. Obie firmy będą pracowały niezależnie od siebie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Firma BitDefender poinformowała o powrocie wirusa, który po raz pierwszy pojawił się przed sześciu laty na witrynie firmy Hewlett-Packard. Tym razem szkodliwy kod znaleziono w sterowniku jednego z urządzeń sprzedawanych przez HP.
      Funlove, bo o nim mowa, został odkryty na serwerze FTP wspomnianego koncernu. Przedstawiciele HP zostali o nim poinformowali i usunęli już aplikację zawierającą szkodliwy kod.
      To dowód na to, jak ważne jest filtrowanie ruchu wychodzącego w środowisku biznesowym. Pokazuje też jak wielkie zdolności do przetrwania ma szkodliwe oprogramowanie – powiedział Bogdan Dumitru, odpowiedzialny w BitDefenderze za sprawy technologii.
      Funlove usiłuje zdobyć przywileje administracyjne w systemie Windows NT dając w ten sposób cyberprzestępcom zdalny dostęp do zaatakowanej maszyny. Wirus infekuje również systemy Windows 9x, ME oraz Windows 2000.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zwierzęta morskie utrzymują równowagę wśród wirusów zamieszkujących wodę. Biolog morski Jennifer Welsh będzie w najbliższy poniedziałek broniła – oczywiście online – pracy doktorskiej na Wolnym Uniwersytecie w Amsterdamie. Jej temat brzmi Marine virus predation by non-host organism.
      Wirusy to najbardziej rozpowszechnione cząstki biologiczne w środowisku morskim. Niewiele jednak wiadomo o potencjalnych skutkach ekologicznych procesu usuwania wirusów przez organizmy nie będące ich gospodarzami, czytamy w artykule, który Welsh opublikowała na łamach Nature. Wiemy, że wirusy, poprzez uśmiercanie czy skracanie życia w inny sposób, regulują populację organizmów będących ich gospodarzami. Pani Welsh chciała się dowiedzieć, jak populacja wirusów jest regulowana przez organizmy nie będące ich gospodarzami.
      Wirusy mogą być pożywieniem dla wielu organizmów. Na przykład ostryżyca japońska filtruje wodę, by pobierać z niej tlen, glony i bakterie. Przy okazji pochłania jednak wirusy. Podczas naszych eksperymentów nie podawaliśmy ostryżycom żadnego pożywienia. Filtrowały wodę tylko po to, by pobrać z niej tlen. Okazało się, że usunęły z wody 12% wirusów, mówi Welsh.
      Jednak to nie ostryżyce najbardziej efektywnie usuwały wirusy. Uplasowały się dopiero na 4. pozycji wśród zwierząt badanych przez Welsh. Z organizmów, które testowaliśmy, najlepiej sprawowały się gąbki, kraby i sercówki. Podczas naszych eksperymentów w ciągu trzech godzin gąbki usunęły z wody aż 94% wirusów. Nawet, gdy co 20 minut dostarczaliśmy do wody kolejny zestaw wirusów gąbki niezwykle efektywnie je usuwały, mówi uczona.
      Welsh dodaje, że uzyskanych przez nią wyników nie można przekładać wprost na środowisko naturalne. Tam sytuacja jest znacznie bardziej złożona. Obecnych jest bowiem wiele innych gatunków, które wpływają na siebie nawzajem. Na przykład, gdy ostryżyca filtruje wodę i w pobliżu znajdzie się krab, ostryżyca zamyka skorupę i przestaje filtrować. Ponadto na zwierzęta mają wpływ ruchy wody, temperatura, promieniowanie ultrafioletowe, wyjaśnia.
      Badania Welsh przydadzą się w akwakulturze. Ryby hoduje się tam w zamknięciu w wodach oceanicznych. W takich farmach słonej wody olbrzyma liczba zwierząt z jednego gatunku jest trzymana w monokulturze. Jeśli w takich hodowli wybuchnie epidemia, istnieje wysokie ryzyko, że patogen rozprzestrzeni się na żyjące w oceanie dzikie populacje. Jeśli do takiej hodowli dodamy wystarczającą liczbę gąbek, możemy zapobiec rozprzestrzenianiu się epidemii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wirusy należą do najmniej poznanych cząstek na Ziemi. Jako, że nie są one w stanie przeżyć i mnożyć się bez gospodarza, niektórzy nie uważają ich nawet za organizmy żywe. Tymczasem brazylijscy naukowcy odkryli wirusa, którego genom składa się wyłącznie z genów nieznanych nauce.
      Odkrywca nowego wirusa, Jônatas Abrahão z Uniwersytetu Federalnego Minas Gerais, mówi, że to pokazuje, jak wiele jeszcze musimy się o wirusach nauczyć.
      Naukowiec trafił na niezwykłego wirusa gdy poszukiwał wielkich wirusów o rozmiarach bakterii. W lokalnym sztucznym zbiorniku wodnym znalazł nie tylko wielkie wirusy, ale też nowego niewielkiego wirusa, który był niepodobny do wirusów infekujących ameby. Uczeni nazwali go Yarawirusem.
      Mikroorganizm okazał się niezwykły nie tylko ze względu na swoje rozmiary. Gdy naukowcy zsekwencjonowali genom wirusa i porównali go z bazami danych dotyczącymi innych wirusów okazało się, z żaden z genów Yarawirusa nie był wcześniej znany nauce.
      Odkryciem nie jest zaskoczona Elodie Ghedin z New York University, która bada wirusy obecne w ściekach i drogach oddechowych. Uczona mówi, że 95% wirusów znajdowanych w ściekach to nowe organizmy.
      Jeszcze innego odkrycia, tym razem masowego, dokonali Christopher Buck i Michael Tisza, wirusolodzy z amerykańskiego National Cancer Institute. Poszukiwali oni w tkankach ludzkich i zwierzęcych wirusów z kolistym dsDNA. do takich wirusów należy np. wirus brodawczaka ludzkiego. Naukowców interesowały te wirusy, gdyż – przynajmniej niektóre z nich – biorą udział w powstawaniu nowotworów.
      Buck i Tisza wyizolowali fragmenty wirusów z dziesiątków próbek tkanek zwierząt oraz ludzi i poszukiwali tych z kolistym dsDNA. Zidentyfikowali w ten sposób około 2500 wirusów, z których około 600 jest nowych dla nauki.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...