Sign in to follow this
Followers
0
Kompozyty z "układem krwionośnym"
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Inżynierowie z California Institute of Technology (Caltech) i Jet Propulsion Laboratory (JPL) stworzyli inspirowany kolczugami materiał, który pod wpływem przyłożonego napięcia zmienia się z miękkiego i giętkiego w sztywny. Materiał taki może przydać się do tworzenia egzoszkieletów czy rusztowań zmieniających swoją sztywność w miarę gojenia się ran. Być może posłuży też do budowy... mostów, które można będzie przywieźć na miejsce w rolce, rozwinąć i usztywnić.
Chcieliśmy stworzyć materiał, który zmienia sztywność na żądanie, mówi profesor Chiara Daraio. Naszym celem było uzyskanie tkaniny, która z miękkiej w kontrolowany sposób staje się sztywna, dodaje. Takie materiały spotykaliśmy dotychczas w literaturze. Dość przypomnieć tutaj kolczugę z mithrilu, którą Frodo otrzymał od Bilba czy pelerynę Batmana z filmu Batman Begins.
W życiu codziennym dość często spotykamy się z materiałami, których sztywność została zmieniona. Wystarczy przypomnieć sobie np. paczkę próżniowo zapakowanej kawy. Jest sztywna i twarda, jednak natychmiast po przebiciu opakowania całość staje się miękka. Takie struktury jak kawa czy piasek mają złożone kształty, nie są ze sobą połączone i mogą usztywniać się tylko pod wpływem kompresji. Z kolei kolczuga, złożona z połączonych metalowych pierścieni może stawać się sztywna zarówno gdy ją ściśniemy, jak i gdy ją rozciągniemy. I to właśnie ta jej właściwość zainspirowała naukowców. Przetestowaliśmy wiele różnych cząstek, by sprawdzić, które są zarówno elastycznej, jak i można nadać im sztywność. Okazało się, że te, które zyskują sztywność tylko podczas jednego z rodzajów przyłożonej siły (ściskania lub rozciągania) nie sprawują się najlepiej, mówi profesor Daraio.
Uczeni sprawdzili więc całą gamę kształtów, od połączonych pierścieni, poprzez połączone sześciany po połączone ośmiościany foremne, które przypominają dwie piramidy złączone podstawami. W modelowaniu interakcji tego typu struktur brał udział profesor Jose E. Andrade, specjalista od modelowania zachowania materiałów ziarnistych.
Materiały ziarniste to piękny przykład złożonego systemu, w którym proste interakcje na poziomie poszczególnych ziaren mogą przekładać się na złożone zmiany strukturalne całości, mówi Andrade. Naukowcy prowadzili symulacje komputerowe oraz wytwarzali za pomocą drukarek 3D obiecujące struktury i testowali je w laboratorium.
Podczas testów materiały albo ściskano w komorach próżniowych albo zrzucano na nie ciężary. W jednym przypadku taka „kolczuga” utrzymała masę 50-krotnie większą od własnej masy. Testy wykazały, że strukturami o największych zmianach właściwości mechanicznych pomiędzy stanem elastycznym a sztywnym, były struktury o największej średniej liczbie punktów stycznych pomiędzy tworzącymi je elementami.
Tego typu tkaniny mają największy potencjał. Mogą być lekkie, miękkie i wygodne w użyciu, a pod wpływem przyłożonej siły stają się sztywną strukturą, która może wspierać i chronić właściciela, wyjaśnia Yifan Wang, jeden z autorów badań.
Jak już wspomnieliśmy, taki materiał może posłużyć również do budowy mostów. Jak więc spowodować, by coś, co zostało przywiezione w rolce utrzymało ludzi czy pojazdy? Profesor Daraio mówi, że przez taki materiał można np. przeciągnąć liny, za pomocą których materiał zostanie ściśnięty i usztywniony. Te liny będą działały tak, jak troczki, za pomocą których ściągamy np. kaptur, wyjaśnia.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy opracowali nanocząstki z chitozanem, które zwalczają zarówno pałeczki okrężnicy (Escherichia coli), jak i gronkowce Staphylococcus saprophyticus. Niewykluczone więc, że wejdą one w skład materiałów do opatrywania ran, które będą wspomagać leczenie i chronić przed zakażeniami oportunistycznymi.
Nanocząstki z chiotozanem uzyskano za pomocą żelacji jonowej tripolifosforanem sodu (TPFS). TPFS odpowiada za tworzenie wiązań między łańcuchami biopolimeru. Nanocząstki można też uzyskiwać w obecności jonów miedzi i srebra, a jak wiadomo, mają one działanie bakteriobójcze. Ponieważ stymulując wzrost komórek, kompozyt działał też regenerująco na skórę - ustalono to podczas laboratoryjnych testów na keratynocytach i fibroblastach - warto pomyśleć o zastosowaniach w materiałach opatrunkowych i kosmetykach przeciwstarzeniowych.
Pracami zespołu kierowała Mihaela Leonida z Fairleigh Dickinson University. Artykuł z wynikami badań ukazał się w International Journal of Nano and Biomaterials.
Chitozan jest polisacharydem, pochodną chityny. Charakteryzuje się biozgodnością i nietoksycznością. Nie wywołuje reakcji alergicznych. Enzymy tkankowe rozkładają go do w pełni absorbowanych przez organizm aminosacharydów. Biopolimer polikationowy wykorzystuje się w stomatologii do walki z próchnicą (pod koniec lat 90. prowadzono np. badania nad zastosowaniem chitozanu jako składnika optymalizującego cechy systemów łączących kompozyty z zębiną, polisacharyd wchodzi też w skład past do zębów) oraz w opakowaniach w przemyśle spożywczym (w przeszłości ustalono, że folie z chitozanu z dodatkiem olejku czosnkowego działają bakteriobójczo na szczepy Staphylococcus aureus, L. monocytogenes, E. coli czy Salmonella enteritidis). Warto też dodać, że testowano tkaniny przeciwbakteryjne z dodatkiem chitozanu, z których byłyby szyte uniformy dla pracowników służby zdrowia.
-
By KopalniaWiedzy.pl
Do czego przydaje się skórka sera pleśniowego, poza dostarczaniem niezapomnianych wrażeń smakowych oraz utrzymywaniem gomułki w całości i poza zasięgiem niepożądanych mikroorganizmów? Okazuje się, że może być inspiracją dla projektantów nowych materiałów, w tym przypadku podlegającego samooczyszczaniu (Proceedings of the National Academy of Sciences).
Zespół pracujący pod kierownictwem Wendelina Starka z Politechniki Federalnej w Zurychu postanowił stworzyć materiał naśladujący skórkę sera camembert. W tym celu zbudowano coś na kształt biokanapki. Najpierw Szwajcarzy uzyskali dwuwymiarową warstwę polimeru, którą zaszczepili grzybami Penicillium roqueforti (stosuje się je jako kultury starterowe przy produkcji miękkich serów z przerostami niebieskiej pleśni). Później całość zamknięto w dwóch warstwach porowatego plastiku, który utrzymywał grzyby w środku, ale był jednocześnie przepuszczalny dla cieczy, w tym wypadku składników odżywczych, i gazów. Podczas testów materiał skrapiano roztworem cukru. W ciągu 2 tygodni grzyby całkowicie zjadały cukier, a po zmetabolizowaniu go przechodziły w stan spoczynku. By poza okresami obfitości pożywienia, które można inaczej opisać jako czas realizacji funkcji oczyszczających, P. roqueforti utrzymały się przy życiu, należy utrzymywać odpowiednią wilgotność otoczenia.
Szwajcarzy snują wielkie plany na przyszłość. Zastanawiają się nad zastosowaniem pokryć "biokanapkowych" w ścianach drapaczy chmur. Zastępując grzyby P. roqueforti glonami, można by przetwarzać dwutlenek węgla na tlen. Poza tym warto by pomyśleć o opakowaniach zapobiegających skażeniu i zepsuciu żywności/napojów czy nowych powierzchniach antybakteryjnych.
-
By KopalniaWiedzy.pl
Naukowcy opracowali nowy rodzaj bawełny, która samooczyszcza się pod wpływem światła słonecznego. Wygląda więc na to, że kiedy w przyszłości pobrudzimy się na dworze, nie trzeba nawet będzie zdejmować ubrania, bo po upływie niezbyt długiego czasu wszystko (brud i bakterie) samo zniknie. Słowo pranie zmieni znaczenie, bo spodnie, bluzy i swetry nie będą trafiać do wody, ale od razu na sznurki.
Mingce Long i Deyong Wu, których artykuł ukazał się w piśmie Applied Materials & Interfaces, tłumaczą, że czyszczenie bawełny za pomocą światła widzialnego jest możliwe dzięki zastosowaniu powłoki z kompozytu tlenku tytanu(IV) modyfikowanego azotem (N-TiO2) oraz jodku srebra (AgI).
Właściwości fizyczne wynalazku przetestowano za pomocą wielu różnych metod, w tym rentgenografii strukturalnej, mikroskopii skaningowej czy rentgenowskiej spektrometrii fotoelektronów XPS. Funkcjonowanie fotokatalityczne materiału (azot był materiałem domieszkującym indukującym fotokatalizę w świetle widzialnym) sprawdzano za pomocą oranżu metylowego.
Znaczną poprawę właściwości fotokatalitycznych tkaniny AgI–N–TiO2, w porównaniu do bawełny powlekanej tylko tlenkiem tytanu(IV), można przypisać efektowi synergistycznemu AgI oraz N-TiO2 (akademicy tłumaczą, że na styku półprzewodników dochodzi do separacji par elektron-dziura). Aktywność fotokatalityczna bawełny AgI–N–TiO2 utrzymuje się po kilku cyklach "naświetlania". Co więcej, powłoka wytrzymuje zwykłe pranie i suszenie.
Za pomocą rentgenografii strukturalnej przed i po reakcji ustalono, że jodek srebra jest stabilnym elementem kompozytu. Duet naukowców podkreśla, że już wcześniej wychodzono z propozycjami samoczyszczących się bawełn, ale zawsze wymagało to wystawienia na oddziaływanie promieniowania ultrafioletowego. Long i Wu powlekali tkaninę nanocząstkami kompozytu AgI–N–TiO2. Zademonstrowali, że na słońcu materiał usuwa oranż metylowy.
-
By KopalniaWiedzy.pl
Bioinżynierowie z Uniwersytetu Johnsa Hopkinsa opracowali płynny materiał – kompozyt cząsteczek naturalnych i syntetycznych – który może pomóc w odtworzeniu uszkodzonej tkanki miękkiej. Wstrzykuje się go pod skórę, a następnie utwardza za pomocą światła. Naukowcy porównują to do zestalania galaretki w formie po spadku temperatury (Science Translational Medicine).
Na razie Amerykanie przeprowadzili wstępne badania na szczurach i ludziach. Rezultaty okazały się naprawdę zachęcające, ale wynalazek nie nadaje się jeszcze do rutynowego stosowania w klinikach.
Implantowane materiały biologiczne mogą naśladować fakturę tkanki miękkiej, ale są zazwyczaj szybko rozkładane przez organizm. Materiały syntetyczne bywają bardziej stałe, ale układ odpornościowy je odrzuca i przeważnie nie łączą się dobrze z otaczającą naturalną tkanką. Nasz materiał kompozytowy, z biologicznym komponentem zwiększającym kompatybilność z ciałem i syntetycznym odpowiadającym za wytrzymałość, łączy najlepsze cechy obu światów – podkreśla dr Jennifer Elisseeff.
Amerykanie połączyli kwas hialuronowy (HA), który nadaje naszej skórze elastyczność, oraz poli(tlenek etylenu), w skrócie PEG. Wybrany przez nich polimer jest już z powodzeniem stosowany jako składnik kleju chirurgicznego. Dzięki temu wiadomo, że nie wywołuje ostrych reakcji układu odpornościowego.
Dzięki wykorzystaniu energii światła powstają wiązania między molekułami PEG, a w środku zostaje uwięziony kwas hialuronowy. Co ważne, implant zachowuje swój kształt i nie wycieka. Aby uzyskać jak najlepszy kompozyt PEG-HA, naukowcy wstrzykiwali pod skórę i do mięśni grzbietu szczurów mieszanki różnych stężeń obu substancji. Następnie operowane miejsce oświetlano zieloną diodą LED. Właściwości implantu oceniano po 47 i 110 dniach za pomocą rezonansu magnetycznego, a później usuwano. Bezpośrednie pomiary i MRI wykazały, że implanty utworzone z najwyższego stężenia PEG oraz HA zachowywały pierwotne rozmiary, podczas gdy implanty z samego HA kurczyły się z biegiem czasu.
Bezpieczeństwo i trwałość implantów PEG-HA testowano także przez 3 miesiące na 3 ochotnikach, którzy przeszli abdominoplastykę. Pod skórę brzucha wstrzyknięto im ok. 5 kropel PEG-HA lub samego kwasu hialuronowego. Żaden z pacjentów nie był hospitalizowany ani nie zmarł w związku z 8-mm implantem. Wspominali oni jednak o odczuwaniu gorąca i bólu podczas utwardzania. Po 12 tygodniach od zabiegu rezonans nie wykazał zmniejszenia się implantu. Po jego usunięciu i obejrzeniu okolicznych tkanek okazało się, że rozwinął się lekki-umiarkowany stan zapalny, związany z obecnością leukocytów określonego typu. Naukowcy ujawnili, że podobna reakcja zapalna wystąpiła u szczurów, ale u gryzoni i ludzi zaangażowały się w nią inne białe krwinki. Członkowie zespołu Elisseeff uważają, że jest to związane z wykorzystaną tkanką docelową: u ludzi implanty utworzono w obrębie brzucha, a u szczurów w mięśniach grzbietu. Nadal musimy ocenić trwałość i bezpieczeństwo naszego materiału w innych ludzkich tkankach, takich jak mięśnie czy mniej otłuszczone regiony pod skórą twarzy, by zoptymalizować kompozyt wykorzystywany w różnych procedurach. Amerykanie wiążą największe nadzieje z wykorzystaniem PEG-HA do rekonstrukcji twarzy.
-
-
Recently Browsing 0 members
No registered users viewing this page.