Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Laser przewodnikiem atomów

Recommended Posts

Uczonym po raz pierwszy udało się udowodnić, że atomy mogą być przemieszczane w promieniu lasera i mają wówczas takie same właściwości, jak światło w światłowodach. Osiągnięcie specjalistów z Australia National University będzie miało znacznie przy budowie urządzeń kwantowych, wymagających do pracy użycia sterowalnych fal materii. Takimi urządzeniami będą np. atomowe interferometry, wykorzystywane do pomiaru pola grawitacyjnego Ziemi.

Światłowód może przewodzić wiele modów światła, które nakładają się na siebie, tworząc charakterystyczny wzorzec. Udowodniliśmy, że gdy atomy w komorze próżniowej są przemieszczane w promieniu lasera, również i one tworzą wzorce - mówi profesor Ken Baldwin.

Jego zespół uwięził chmurę zimnych atomów helu, a następnie poddał je działaniu promienia lasera, który biegł aż do urządzenia obrazującego. Następnie stopniowo zmniejszano intensywność światła, aż do pojawienia się wzorca.

Potem ochłodziliśmy atomy tak, że zaczęły zachowywać się bardziej jak fala niż jak cząsteczka i utworzyły kondensat Bosego-Einsteina. Gdy kondensat został wprowadzony do światła lasera, wzorzec zanikł, co dowodzi, że przetransportowaliśmy jeden tryb - pojedynczą falę kwantową - mówi doktor Andrew Truscott.

Uczeni dowiedli, że mierząc czas, w jakim atomy przybywają do systemu obrazowania są w stanie odróżnić tryb wielomodowy (powstawania wzorca) od jednomodowego. Pomiary promienia wielomodowego pokazały, że atomy przybywają w grupach, jako wynik interferencji. Jednak jako, że kondensat Bosego-Einsteina zawiera tylko jeden tryb kwantowy, bez żadnej interferencji, gdy go przemieściliśmy również jej nie zaobserwowaliśmy - dodaje Truscott.

Dowiedliśmy zatem, że atomy mogą być przemieszczane w promieniu światła i mogą mieć wówczas takie same właściwości jak światło poruszające się w światłowodzie - mówi doktor Mattias Johnsson, twórca modelu teoretycznego do opisanych badań.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Na Tufts University stworzono magnetyczne kompozyty elastomerowe, które poruszają się w różny sposób w odpowiedzi na światło. Z takich materiałów można by produkować wiele różnych urządzeń, od prostych silników i zaworów po ogniwa fotowoltaiczne samodzielnie kierujące się w stronę światła słonecznego.
      Znamy wiele naturalnych przypadków reakcji na światło. Wystarczy przypomnieć sobie kwiaty czy liście zwracające się w stronę słońca. Materiały, które zostały wykorzystane przez naukowców z Tufts wykorzystują temperaturę Curie, czyli granicę temperatury, przy której ferromagnetyk zmienia swoje właściwości. Zmiana temperatury powoduje utratę i odzyskanie właściwości magnetycznych. Biopolimery i elastomery wzbogacone ferromagnetykiem CrO2 po wystawieniu ich na działanie promienia lasera czy promieni słonecznych ogrzewają się, tracą właściwości magnetyczne, a gdy się schłodzą, odzyskują te właściwości. Materiały takie w odpowiedzi na obecność pola magnetycznego w zależności od kształtu, mogą wykonywać proste ruchy, jak zginanie się, zwijanie czy zwiększanie swojej powierzchni. Możemy połączyć te proste ruchy w bardziej złożone, jak pełzanie, chodzenie czy pływanie. A wszystko można kontrolować bezprzewodowo, za pomocą światła, mówi profesor Fiorenzo Omenetto.
      Zespół Omenetto zaprezentował działanie wspomnianych materiałów tworząc elastyczne chwytaki, które w odpowiedzi na światło łapały i puszczały przedmioty. Jedną z zalet takich materiałów jest fakt, że możemy selektywnie aktywować fragment ich struktury poprzez skoncentrowanie na nich światła, mówi jedna z autorek badań, Meng Li. I w przeciwieństwie do innych materiałów pobudzanych światłem, które bazują na ciekłych kryształach, nasze materiały mogą poruszać się od lub do źródła światła. Wszystko to pozwala na budowę zarówno dużych, jak i małych obiektów wykonujących złożone, skoordynowane ruchy, dodaje uczona.
      Naukowcy stworzyli prosty mechanizm, który nazwali „silnikiem Curie”. Materiał w kształcie okręgu został zamocowany na osi i umieszczony w pobliżu stałego magnesu. gdy na fragment okręgu padło światło lasera, utracił on właściwości magnetyczne, doszło do zaburzenia równowagi sił i okrąg się obrócił. Wówczas oświetlony dotychczas fragment znalazł się w cieniu, odzyskał właściwości magnetyczne, a utracił je fragment obok, który znalazł się w promieniu lasera. W ten sposób prosty silnik ciągle się obracał.
      Dobierając odpowiednio kształt materiału, właściwości światła i pola magnetycznego, możemy teoretycznie uzyskać bardziej złożone i precyzyjne ruchu, jak zwijanie i rozwijanie, przełączanie zaworów w mikrokanalikach z płynami, możemy napędzać silniki w skali nano i wiele innych rzeczy, mówi Omenetto.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na fińskim Aalto University uzyskano kondensat Bosego-Einsteina stworzony ze światła i plazmonów powierzchniowych. Ich wzajemne oddziaływanie tworzy polarytony plazmonów powierzchniowych.
      Przed niemal stu laty Einstein i Bose przewidzieli, że prawa mechaniki kwantowej mogą spowodować, iż duże grupy cząstek mogą zachowywać się tak, jakby były jedną cząstką. Zjawisko to nazwano kondensacją Bosego-Einsteina. Pierwszy kondensat tego typu udało się uzyskać dopiero w 1995 roku.
      Kondensaty uzyskiwano już wielokrotnie i w różnych konfiguracjach, jednak naukowcy ciągle nad nimi pracują. Chcą bowiem uzyskiwać je szybciej, w wyższych temperaturach i mniejszej skali. Mają bowiem nadzieję na praktyczne ich wykorzystanie. Z kondensatu Bosego-Einsteina można by stworzyć ekstremalnie małe źródło światła, które niezwykle szybko będzie przetwarzało dane.
      Fińscy uczeni poinformowali o stworzeniu kondensatu Bosego-Einsteina ze światła i elektronów poruszających się na powierzchni złotych nanopręcików. W przeciwieństwie do większości wcześniej uzyskiwanych kondensatów ten z Aalto, jako że złożony jest głównie ze światła, pojawia się w temperaturze pokojowej, nie trzeba całości schładzać do temperatur bliskich zera absolutnego.
      Korzystając ze współczesnych metod produkcyjnych jesteśmy w stanie w łatwy sposób uzyskać macierz z nanopręcików. W ich pobliżu można skupiać światło na bardzo małych powierzchniach, mniejszych nawet od długości fali światła w próżni. Te właściwości dają nam interesujące perspektywy dla przyszłych badań i zastosowań praktycznych nowego kondensatu, mówi profesor Päivi Törmä.
      Głównym problemem związanym z nowym rodzajem kondensatu jest fakt, że błyskawicznie się on pojawia i znika. Z naszych wyliczeń wynika, że czas jego życia jest liczony w pikosekundach, wyjaśnia doktorant Antti Moilanen. Naukowcy musieli więc wymyślić sposób na udowodnienie istnienia czegoś, co znika po bilionowych części sekundy. Wpadli na pomysł, by zmusić kondensat do poruszania się. Kondensat powoduje, że złote nanopręciki emitują światło. Obserwując to światło możemy badać zmiany kondensatu w czasie, dodaje Tommi Hakala. Emitowane światło jest podobne do światła laserowego. Możemy zmieniać odległości pomiędzy nanopręcikami, co pozwala nam na zdecydowanie, czy mamy do czynienia z kondensacją Bosego-Einsteina czy z pojawieniem się zwykłego światła laserowego. To są dwa bardzo zbliżone zjawiska fizyczne, a kluczowym jest możliwość odróżnienia ich od siebie. Oba nadają się też do odmiennych zastosowań, mówi profesor Törmä.
      Światło laserowe i kondensacja Bosego-Einsteina dają jasne promienie, jednak koherencje światła mają różne właściwości. To zaś wpływa na sposób, w jaki można manipulować światłem w zależności od wymaganych zastosowań. Kondensat pozwala na uzyskiwanie niezwykle krótkich impulsów światła, które mogą zostać wykorzystane do szybkiego przekazywania i przetwarzania informacji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed tygodniem w National Ignition Facility (NIF) uzyskano rekordowo silny impuls lasera. W ramach badań nad nowymi źródłami energii 192 lasery wysłały jednocześnie ultrafioletowe impulsy świetlne w kierunku centralnej komory, w której uzyskano 1,875 megadżula. Każdy z impulsów trwał 23 miliardowe części sekundy i w sumie wygenerowały one moc 411 biliardów watów (TW) czyli 1000 razy większą niż potrzebna jest do zasilenia całych Stanów Zjednoczonych.
      To ważny krok w kierunku rozpoczęcia fuzji. Podczas przygotowań do uruchomienia NIF dokonywaliśmy wielu podobnych prób, podczas których uruchamiany był jeden laser czy też zestawy po cztery. Tym razem jednak jednocześnie wystrzeliły 192 lasery - mówi Edward Moses, dyrektor NIF.
      Moc laserów NIF wynosi w sumie 2,03 MJ, jednak zanim promienie dosięgną centralnej komory ich moc nieco spada ona podczas przechodzenia przez instrumenty diagnostyczne i optykę. NIF jest zatem pierwszym ośrodkiem, w którym lasery ultrafioletowe osiągnęły moc 2 MJ. To niemal 100-krotnie więcej niż możliwości innych podobnych ośrodków.
      Podczas testu osiągnięto też bardzo dużą precyzję produkcji energii. Odchylenie nie przekraczało 1,3%. Precyzja jest niezwykle ważna, gdyż to rozkład energii pomiędzy poszczególnymi promieniami będzie decydował o symetrii implozji w kapsułach zawierających paliwo niezbędne do rozpoczęcia fuzji.
      National Ignition Facility pracuje w ramach Lawrence Livermore National Laboratory. O otwarciu zakładu oraz jego zadaniach informowaliśmy w 2009 roku.
    • By KopalniaWiedzy.pl
      Grupa naukowców położyła fundamenty pod skonstruowanie niezwykle dokładnego zegara atomowego. Zegara, który może pomylić się o 1/10 sekundy w ciągu 14 miliardów lat.
      Takie urządzenie byłoby przydatne do nawiązywania bezpiecznej łączności oraz posłużyłoby do zbadania postaw fizyki. Obecnie najdokładniejszy zegar atomowy świata - brytyjski CsF2 - może wykazać odchylenie o 1 sekundę na 138 milionów lat.
      Obecnie używane zegary atomowe są wystarczająco dokładne do większości zastosowań. Są jednak takie dziedziny, w których posiadanie dokładniejszego zegara jest bardzo pożądane - mówi profesor Alex Kuzmich z Georgia Institute of Technology. Oprócz fizyków z Georgii w pracach zespołu brali udział naukowcy z australijskiego University of New South Wales oraz University of Nevada.
      Zegary atomowe do pomiaru czasu wykorzystują drgania elektronów w atomach wywoływane przez działanie laserów. Jednak elektrony są podatne na oddziaływanie pola elektrycznego i magnetycznego, co zaburza ich dokładność. Naukowcy z USA i Australii wpadli na pomysł, by zamiast elektronów wykorzystać neutrony, które są cięższe i gęściej upakowane, zatem mniej podatne na wpływy zewnętrzne. Zegar neutronowy powinien być zatem dokładniejszy od opartego na elektronach.
      W naszym artykule pokazaliśmy, że za pomocą lasera można tak wpłynąć na orientację elektronów, że będziemy mogli wykorzystać neutrony w roli wahadła odmierzającego czas. Jako, że neutrony są gęsto upakowane, czynniki zewnętrzne nie będą miały niemal żadnego wpływu na ich drgania - mówi Corey Campbell, główny autor artykułu.
      Uczeni proponują wykorzystać petahercowy (1015) laser do wzbudzenia jonu toru 229. Taki zegar będzie pracował tylko w bardzo niskich temperaturach, rzędu ułamków kelwina. Zwykle takie temperatury uzyskuje się za pomocą lasera, jednak tutaj będzie to stanowiło problem, gdyż laser jest wykorzystywany do wzbudzenia jonów. Naukowcy zaproponowali użycie jonu toru 232 obok toru 229. Tor 232 reaguje na inną częstotliwość światła lasera niż tor 229. Cięższy jon miałby zostać schłodzony i schłodzić cały system, bez wpływania na oscylacje toru 229.
    • By KopalniaWiedzy.pl
      Doktor Julian Allwood i doktorant David Leal-Ayala z Univeristy of Cambridge udowodnili, że możliwe jest usunięcie toneru z papieru, który został zadrukowany przez drukarkę laserową. W procesie usuwania papier nie zostaje poważnie uszkodzony, dzięki czemu tę samą kartkę można wykorzystać nawet pięciokrotnie. Niewykluczone, że w niedalekiej przyszłości powstaną urządzenia, które będą potrafiły zarówno drukować jak i czyścić zadrukowany papier.
      „Teraz potrzebujemy kogoś, kto zbuduje prototyp. Dzięki niskoenergetycznym skanerom laserowym i drukarkom laserowym ponowne użycie papieru w biurze może być opłacalne“ - mówi Allwood.
      Niewykluczone, że nowa technika nie tylko przyniesie korzyści finansowe firmom i instytucjom, ale również przyczyni się do ochrony lasów, redukcji zużycia energii i emisji zanieczyszczeń, do których dochodzi w procesie produkcji papieru i jego pozbywania się, czy to w formie spalania, składowania czy recyklingu.
      Naukowcy, dzięki pomocy Bawarskiego Centrum Laserowego, przetestowali 10 różnych konfiguracji laserów. Zmieniano siłę impulsów i czas ich trwania, używając laserów pracujących w ultrafiolecie, podczerwieni i w paśmie widzialnym. Podczas eksperymentów pracowano ze standardowym papierem Canona pokrytym czarnym tuszem z drukarki laserowej HP. Takie materiały i sprzęt są najbardziej rozpowszechnione w biurach na całym świecie.
      Po oczyszczeniu z druku, papier był następnie analizowany przy użyciu skaningowego mikroskopu elektronowego, który pozwalał zbadać jego kolor oraz właściwości mechaniczne i chemiczne.
      Wstępne analizy wykazały, że rozpowszechnienie się techniki oczyszczania i ponownego wykorzystywania papieru może o co najmniej połowę obniżyć emisję zanieczyszczeń związaną z produkcją i recyklingiem papieru.
×
×
  • Create New...