Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Białko z nicienia na sepsę
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Sepsa dotyka niemal 3 milionów noworodków rocznie i zabija 214 000 z nich. Badania obserwacyjne, przeprowadzone pod kierunkiem naukowców z University College London (UCL) wykazały, że wiele noworodków umiera z powodu sepsy, ponieważ stosowane do jej zwalczania antybiotyki tracą efektywność. Badania przeprowadzono w latach 2018–2020 na 3200 noworodkach u których wystąpiła sepsa.
Naukowcy przyjrzeli się dzieciom z 19 szpitali w 11 krajach. Okazuje się, że wśród tych przypadków, gdzie zidentyfikowano patogen odpowiedzialny za sepsę, odsetek zgonów wynosił 18% i był powodowany w dużej mierze antybiotykoopornością. Tam, gdzie patogenu nie zidentyfikowano, odsetek zgonów wynosił 10%.
W badaniach wzięło udział ponad 80 specjalistów z całego świata, a ich celem było udoskonalenie zaleceń WHO odnośnie leczenia sepsy u noworodków. Organizmy ewoluują, zmienia się lekooporność. Dlatego też zalecenia kliniczne dotyczące sepsy noworodków wymagają ciągłych zmian. Nasze zalecenia opierają się na najnowszych dowodach dobrej jakości i są znaczącym krokiem w kierunku poprawy metod leczenia, mówi doktor Wolfgang Stöhr z UCL.
Podjęcie tych badań było bardzo ważne, gdyż pomagają nam one zrozumieć, jakie rodzaje infekcji dotyczą noworodków w szpitalach, jaki organizm je wywołuje, jakie leczenie jest stosowane i dlaczego rośnie liczba zgonów, dodaje doktor Manica Balasegaram, dyrektor w Global Antibiotic Research and Development Partnership (GARDP).
Autorzy badań odnotowali olbrzymie różnice w odsetku zgonów pomiędzy poszczególnymi szpitalami. W poszczególnych placówkach umierało od 1,6% do 27,3% zarażonych sepsą noworodków. Wyższy odsetek zgonów zauważono w krajach o niskich i średnich dochodach. Badania prowadzono w szpitalach w Chinach, Bangladeszu, Brazylii, Wietnamie, Ugandzie, Grecji, Tajlandii, RPA, Włoszech, Indiach i Kenii.
Jasno pokazały one, że wiele z nich to infekcje antybiotykooporne, szczególnie w krajach o niskich i średnich dochodach, które często zmagają się z niedoborem pielęgniarek, łóżek i przestrzeni. Ryzyko infekcji jest bardzo wysokie i większość z nich to infekcje antybiotykooporne. Jeśli antybiotyki nie zadziałają, dziecko często umiera. Potrzebna jest tutaj pilna zmiana. Potrzebujemy antybiotyków radzących sobie ze wszystkimi infekcjami bakteryjnymi, mówi profesor Sithembiso Velaphi, ordynator oddziału pediatrycznego w Chris Hani Baragwanath Academic Hospital w Johannesburgu.
W badanych szpitalach do walki z sepsą wykorzystywano łącznie ponad 200 różnych połączeń antybiotyków i często je zmieniano z powodu oporności bakterii na leczenie. W wielu przypadkach lekarze byli zmuszeni użyć karbapenemów. To antybiotyki ostatniej szansy, co do których WHO zaleca używanie ich trudnych, szczególnych przypadkach po to, by nie zabrakło ich właśnie w takich szczególnych sytuacjach. Często jednak były to jedyne antybiotyki zdolne do zwalczenia infekcji. Antybiotyki ostatniej szansy były przepisywane w 15% zbadanych przypadków. Z kolei najczęściej identyfikowanym patogenem była Klebsiella pneumoniae, bakteria łączona z zakażeniami wewnątrzszpitalnymi. Obok niej sepsę często powodowały Acinetobacter spp., Staphylococcus aureus. Wymienione patogeny były często oporne na działanie antybiotyków.
Na podstawie przeprowadzonych badań ich autorzy opracowali dwa narzędzia, które mogą być wykorzystywane na oddziałach opieki neonatologicznej. Pierwsze z nich to NeoSep Severity Score, bazujący na 10 objawach, który pozwala zidentyfikować dzieci szczególnie narażone na zgon, którymi należy zająć się w pierwszej kolejności. Drugi zaś, NeoSep Recovery Score, opierający się na tych samych objawach, za pomocą którego lekarze mogą zdecydować, czy należy rozszerzyć leczenie.
Antybiotykooporność stanowi coraz większy problem dla całego świata. Niejednokrotnie już poruszaliśmy ten temat.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Szybką i bezbłędną klasyfikację białek, wykrywanie w nich miejsc wiążących potencjalne leki, identyfikowanie białek występujących na powierzchni wirusów, a także badania np. RNA, umożliwia nowe narzędzie bioinformatyczne opracowane przez naukowców z Wydziału Biologii UW.
BioS2Net, czyli Biological Sequence and Structure Network, jest zaawansowanym algorytmem wykorzystującym uczenie maszynowe, pozwalającym na klasyfikację nowo poznanych białek nie tylko na podstawie podobieństwa sekwencji aminokwasowych, ale także ich struktury przestrzennej. Publikacja na jego temat ukazała się na łamach pisma International Journal of Molecular Sciences.
Narzędzie opracował zespół kierowany przez dr. Takao Ishikawę z Zakładu Biologii Molekularnej Wydziału Biologii UW we współpracy z naukowcem z Wydziału Matematyki, Informatyki i Mechaniki UW. Jak mówią sami autorzy, jego głównym zastosowaniem jest usprawniona klasyfikacja białek, ponieważ obecnie stosowany system klasyfikacji strukturalnej opiera się na żmudnej pracy polegającej na porównywaniu struktur nowych białek do tych już skategoryzowanych.
Istnieje co prawda jego zautomatyzowany odpowiednik, jednak jest on bardzo restrykcyjny i bierze pod uwagę wyłącznie podobieństwo sekwencji białek, całkowicie pomijając ich strukturę. Takie narzędzie jak BioS2Net potencjalnie ma szansę znacząco usprawnić cały proces – wyjaśnia dr Ishikawa. Dodatkowo opracowana przez nas architektura może zostać użyta (po niewielkich przeróbkach) do innych zadań, niekoniecznie związanych z klasyfikacją. Przykładowo można by jej użyć do wykrywania w białku miejsc wiążących potencjalne leki lub do identyfikacji białek występujących na powierzchni wirusów.
Można sobie np. wyobrazić sytuację, w której dotychczas zaklasyfikowane do innych grup białka, dzięki zastosowaniu BioS2Net zostaną skategoryzowane jako bardzo podobne do siebie pod względem budowy powierzchni, mimo innego zwinięcia łańcucha białkowego wewnątrz struktury. I wówczas niewykluczone, że cząsteczka oddziałująca z jednym białkiem (np. jako lek) okaże się także skutecznym interaktorem dla drugiego – wymienia dalsze potencjalne zastosowania praktyczne narzędzia dr Ishikawa. Innym ciekawym zastosowaniem mogłoby być np. wykrywanie miejsc wiążących w białkach, które mogą stanowić albo cel dla leków, albo punkt interakcji z białkiem wirusowym.
Działanie BioS2Net opiera się na wykonywanych po sobie operacjach matematycznych, które bazują na danych o konkretnym białku. Do pracy narzędzie potrzebuje tychże danych (im więcej, tym lepiej), odpowiedniego oprogramowania zdolnego do wykonywania skomplikowanych obliczeń związanych z treningiem sieci neuronowej oraz sporej ilości czasu.
W efekcie BioS2Net tworzy unikatową reprezentację każdego białka w postaci wektora o stałym rozmiarze. Można to porównać do czegoś w rodzaju kodu kreskowego opisującego każde z poznanych białek – tłumaczy dr Ishikawa. Narzędzie świetnie nadaje się do klasyfikacji białek na podstawie sekwencji aminokwasowej oraz struktury przestrzennej. Szczególnie istotne jest to, że można dzięki niemu wykryć białka o podobnej strukturze trójwymiarowej, ale o odmiennym „foldzie”, czyli innym sposobie zwinięcia łańcucha białkowego.
Dotychczas stosowane metody przydzielałyby takie białka do osobnych grup. Tymczasem znane są przypadki, gdy tego typu cząsteczki pełnią podobne funkcje. I do wykrywania takich grup białek może się przydać BioS2Net – dodaje.
Jak mówi naukowiec, nowe białka odkrywa się cały czas. Zdecydowana większość z nich, jeśli już ma opisaną strukturę przestrzenną, jest deponowana w bazie danych Protein Data Bank, do której każdy ma dostęp przez Internet. Warto jednak zwrócić uwagę, że proces odkrywania nowych białek rozpoczyna się o wiele wcześniej, już na etapie sekwencjonowania genomu. W bazach danych genomów często można spotkać się z adnotacją ’hypothetical protein’ (pol. hipotetyczne białko). Istnieją algorytmy komputerowe, które na podstawie sekwencji nukleotydowych w zsekwencjonowanym genomie przewidują obszary przypominające geny, które potencjalnie kodują informację o białkach. I takich potencjalnych białek znamy bardzo wiele. Ich funkcje można częściowo przewidzieć na podstawie podobieństwa do cząsteczek już wcześniej opisanych, ale do pełnego poznania takiej roli i mechanizmu działania często jednak należy najpierw ustalić ich strukturę, co wymaga miesięcy lub lat eksperymentów – opowiada badacz z UW.
W przypadku białek podobna sekwencja aminokwasów z reguły przekłada się na podobną strukturę. Do niedawna był to wręcz dogmat w biologii strukturalnej. Dzisiaj jednak wiadomo – mówi dr Ishikawa – że wiele białek jest inherentnie nieustrukturyzowanych (IDP; ang. intrinsically disordered protein) albo przynajmniej zwiera w sobie tego typu rejony. Takie białka mogą przyjmować różne struktury w zależności od tego z jakimi innymi białkami w danym momencie oddziałują.
Dodatkowo bardzo istotny jest cały kontekst, w jakim białko ulega pofałdowaniu. Przykładowo, obecność tzw. białek opiekuńczych, czy nawet samo tempo syntetyzowania białka w komórce, może mieć niemały wpływ na ostateczny jego kształt, a zatem też na funkcje. Nie zmienia to jednak faktu, że cechą fundamentalną każdego białka jest jego sekwencja aminokwasowa – podkreśla.
A dlaczego w ogóle poznanie dokładnej budowy cząsteczki białka jest takie ważne? Autor publikacji wyjaśnia, że białka, realizując swoje zadania w komórce, zawsze przyjmują określoną strukturę. Np. jeśli chcemy zaprojektować nowy lek, który będzie oddziaływał z określonym białkiem, to fundamentalne znaczenie ma określenie struktury tego drugiego. W trakcie pandemii SARS-CoV-2 trzeba było np. określić strukturę wirusowego białka S (tzw. kolca) m.in. po to, aby można było zaproponować cząsteczkę swoiście z nim oddziałującą, a przez to zmniejszyć wydajność zakażania komórek człowieka – mówi. Podsumowując: badanie struktury białek ma ogromne znaczenie dla poznania ich funkcji i mechanizmu działania, a także innych cząsteczek z nimi oddziałujących.
Jeśli chodzi o sam BioS2Net, to najpierw należy ściągnąć z bazy danych i przetworzyć informacje o danym białku. Przetwarzanie służy temu, aby wszystkie cechy białka, takie jak współrzędne atomów, rodzaje aminokwasów, profil ewolucyjny itd., zamienić na liczby, które będą zrozumiałe dla komputera. Każdy pojedynczy atom cząsteczki jest opisywany przez kilkadziesiąt liczb, które wyrażają wspomniane cechy.
Następnie liczby te wprowadza się do sieci neuronowej, która analizuje każdy z atomów oraz ich najbliższych sąsiadów, biorąc pod uwagę zarówno ich ułożenie przestrzenne, jak i sekwencyjne. Kolejny etap to łączenie grup atomów w jeden „superatom”, który zawiera w sobie całą wyuczoną lokalną informację. Proces ten powtarza się do momentu aż ów „superatom” będzie zawierał zagregowane informacje o całym białku. To jest nasz kod kreskowy, który wykorzystujemy potem do klasyfikacji białka, używając standardowych sieci neuronowych – zaznacza dr Ishikawa.
Zapytany o dokładność nowego narzędzia biolog wyjaśnia, że jeśli chodzi o wytworzenie unikatowego wektora reprezentującego poszczególne białka, to BioS2Net robi to bezbłędnie, tzn. że każde białko jest reprezentowane w jedyny możliwy sposób i żadna inna cząsteczka nie będzie opisana w taki sam sposób.
Natomiast, gdy zastosowaliśmy BioS2Net do klasyfikacji białek, osiągnęliśmy wynik nawet 95,4 proc. trafności w porównaniu do obowiązującej klasyfikacji wg bazy danych. Oznacza to, że w ponad 95 przypadków na 100 BioS2Net był w stanie prawidłowo przyporządkować białko do danej grupy. Tutaj jednak warto wspomnieć, że ta obowiązująca klasyfikacja opiera się na podobieństwie sekwencji aminokwasowych i pomija informacje strukturalne – tłumaczy autor publikacji.
Naukowcy podkreślają, że poza głównym zastosowaniem, czyli klasyfikacją białek, BioS2Net będzie mógł służyć także do analizowania innych cząsteczek biologicznych, w tym RNA. Uważamy, że narzędzie można by też wykorzystywać do klasyfikacji zupełnie innych danych biologicznych, np. map chromosomów w jądrze komórkowym. Właściwie to nasza architektura może być przydatna wszędzie tam, gdzie jest zdefiniowana struktura i sekwencja – mówią.
Dr Ishikawa dodaje, że BioS2Net powstał w ramach pracy licencjackiej pierwszego autora (jego Alberta Roethla) wykonanej pod kierunkiem. Warto to podkreślić, bo to ważny sygnał, że licencjat niekoniecznie jest pracą dyplomową, którą po prostu trzeba zrobić, ale czymś, co ma potencjał naukowy i może zostać opublikowane w międzynarodowym czasopiśmie – zaznacza naukowiec.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W łódzkim Bionanoparku powstanie laboratorium firmy NapiFeryn Bio Tech. Będzie w nim produkowane białko z rzepaku, które może zrewolucjonizować i rynek spożywczy, i naszą dietę. W działającej już prototypowej linii produkcyjnej powstaje tygodniowo kilka kilogramów izolatu białkowego (>90% białka) i koncentratu białkowo-błonnikowego (ok. 30% białka). Oba te produkty mogą być stosowane jako dodatki do słodyczy, makaronów, sosów, napojów, pieczywa czy wegańskich zamienników mięsa.
Rzepak, w odróżnieniu od soi, uprawiany jest lokalnie – nie trzeba go importować ani zwiększać jego upraw, ponieważ w procesie pozyskiwania białka wykorzystuje się pozostałości po tłoczeniu oleju rzepakowego. Jest to alternatywne rozwiązanie dla białka zwierzęcego, przyjazne naturze – zostawia znacznie mniejszy ślad węglowy, stwierdziła Magdalena Kozłowska, prezes NapiFeryn BioTech. Białko z rzepaku ma doskonałe wartości odżywcze. Jest łatwo trawione i przyswajalne przez ludzki organizm.
Dotychczasową przeszkodą w stosowaniu go w przemyśle spożywczym był jego charakterystyczny, gorzki posmak. Technologia opatentowana przez nas całkowicie ten problem usuwa. Nasze białko jest nie tylko zdrowe, ale też smaczne, mówi Piotr Wnukowski, wiceprezes firmy.
Co prawda produkt jest testowany też przez firmę w eksperymentalnej kuchni, jednak NapiFeryn BioTech nie chce produkować żywności, ale licencjonować swój produkt koncernom spożywczym. Produkty zawierające białko rzepakowe mogą trafić do sklepów już w ciągu 2-3 lat.
Izolat z białka z rzepaku został uznany za produkt bezpieczny i jest dopuszczony przez UE do stosowania w przemyśle spożywczym.Obecnie firma przygotowuje się do zarejestrowania koncentratu błonnikowo-białkowego.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Uczeni z Uniwersytetów w Aberdeen i Leicester zidentyfikowali w mózgu obszar, który napędza zapotrzebowanie na pożywienie bogate w białko. Odkrycie może mieć znaczenie dla rozwoju personalizowanych terapii otyłości. Nie od dzisiaj bowiem wiadomo, że dieta niskobiałkowa jest powiązana z otyłością.
Naukowcy zauważyli, że gdy szczury trzymano na diecie niskobiałkowej, doszło do większej aktywizacji pola brzusznego nakrywki (VTA), czyli jądra limbicznego śródmózgowia, obszaru odpowiedzialnego za aktywne poszukiwanie jedzenia.
Z badań wynika, że gdy wcześniej ograniczy się dostarczanie protein, VTA staje się bardziej wrażliwe na proteiny niż na inne składniki odżywcze. To zaś sugeruje, że mózgi zwierząt działają tak, by upewnić się, że dostawy białka zostaną utrzymane na odpowiednim poziomie. Taka adaptacja jest zrozumiała, gdyż niedobór białka może mieć katastrofalne skutki zdrowotne. Ponadto wcześniejsze badania wiązały niski poziom białek z otyłością. Nie wiadomo było jednak, jak na zjawisko to wpływa mózg.
Współautor badań doktor Fabien Naneix mówi: Odkryliśmy, że zmniejszenie podaży białka zwiększyło preferencje ku żywności, w której jest więcej białka niż węglowodanów. Ta preferencja ku białkom jest powiązana z większą odpowiedzią VTA i gdy zwierzęta przestawia się z normalnej zbilansowanej diety na dietę niskobiałkową, dochodzi do indukowania preferencji ku białkom, jednak zmiany w VTA wymagają intensywnego procesu uczenia się.
Nasze badania są pierwszymi, łączącymi preferencje ku białkom ze specyficzną aktywnością mózgu. Wiemy,że VTA odgrywa kluczową rolę w procesach pobierania innych składników odżywczych. Teraz wykazaliśmy, że dotyczy to również białek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Całe pokolenia studentów dowiadywały się, że układ odpornościowy trzyma się z dala od mózgu. Wiedzę tę zyskaliśmy około 100 lat temu, gdy jeden z japońskich naukowców przeszczepił myszy tkankę nowotworową. Układ odpornościowy zwierzęcia potrafił zniszczyć tę obcą tkankę, jednak gdy została przeszczepiona do mózgu, guz rósł bez przeszkód. To sugerowało, że układ odpornościowy w mózgu nie działa. Jednak od pewnego czasu zauważamy, że tak nie jest.
Teraz naukowcy z Wydziału Medycyny Washingon University w St. Louis sądzą, że odkryli, w jaki sposób układ odpornościowy wie, gdy coś złego dzieje się w mózgu. Ich zdaniem komórki tego układu znajdują się w oponach mózgowo-rdzeniowych i tam próbkują płyn mózgowo-rdzeniowy, który krąży w mózgu. Gdy wykryją w nim ślady infekcji lub uszkodzenia, przygotowują się do reakcji immunologicznej.
Każdy organ w naszym ciele jest nadzorowany przez układ odpornościowy, mówi profesor Jonathan Kipnis. Jeśli pojawia się guz, uszkodzenie czy infekcja, układ odpornościowy musi o tym wiedzieć. Jednak do niedawna sądzono, że mózg jest tutaj wyjątkiem. Gdy coś tam się dzieje, układ odpornościowy nie reaguje. To nigdy nie miało dla mnie sensu. Odkryliśmy, że układ odpornościowy nadzoruje tez mózg, ale dzieje się to z zewnątrz. Teraz, gdy wiemy, gdzie ten proces przebiega, otwierają się nowe możliwości wpływania na reakcję układu odpornościowego w mózgu.
W 2015 roku Kipnis i jego zespół odkryli sieć naczyń, przez które płyn i niewielkie molekuły przedostają się z mózgu do węzłów chłonnych, w których rozpoczyna się odpowiedź immunologiczna. Odkrycie to wykazało, że istnieje fizyczne połączenie pomiędzy mózgiem a układem odpornościowym. Jednak odkryte naczynia pozwalały na opuszczanie mózgu. Nie było jasne, czy komórki układu odpornościowego są w stanie się do niego dostać lub sprawdzać, co się w nim dzieje.
Kipnis i doktor Justin Rustenhoven, główny autor artykułu opublikowanego w niedawnym numerze Cell, rozpoczęli poszukiwania miejsc, które dawałyby układowi odpornościowemu dostęp do mózgu. Kluczem do sukcesu okazał się fakt, że wspomniane naczynia odprowadzające płyn z mózgu biegły wzdłuż zatok opony twardej.
Eksperymenty wykazały, że zatoki te są pełne molekuł i komórek odpornościowych, które zostały przyniesione z krwią. Znaleziono tak wiele różnych typów komórek odpornościowych. Odkrycie to sugeruje, że układ odpornościowy nadzoruje mózg z pewnej odległości i przystępuje do działania tylko wówczas, gdy wykryje niepokojące sygnały. To może wyjaśniać, dlaczego przez długi czas uważano, iż nie działa on w mózgu.
Aktywność układu odpornościowego w mózgu mogłaby być bardzo szkodliwa. Mógłby zabijać neurony i powodować opuchliznę. Mózg nie toleruje zbyt dużej opuchlizny, gdyż otoczony jest sztywną czaszką. Dlatego też układ odpornościowy został wypchnięty poza mózg, gdzie może go nadzorować bez ryzyka spowodowania uszkodzeń, stwierdza Rustenhoven.
Wyniki najnowszych badań mogą przydać się np. do leczenie stwardnienia rozsianego. Wiadomo bowiem, że choroba ta jest spowodowana atakiem układu odpornościowego na osłonkę neuronów. Podczas badań na modelu mysim udał się wykazać, że choroba ta prowadzi do akumulacji komórek układu odpornościowego w zatokach opony twardej. Nie można więc wykluczyć, że choroba zaczyna się właśnie tam i rozprzestrzenia się na cały mózg.
Potrzebne są kolejne badania, które potwierdzą ewentualną rolę zatok opony twardej w chorobach neurodegeneracyjnych. Jeśli są one bramami do mózgu, możemy spróbować opracować terapie, które powstrzymają zbyt aktywne komórki układu odpornościowego przed dostaniem się do mózgu. Zatoki są blisko powierzchni, więc być może uda się nawet podawać leki przez czaszkę. Teoretycznie można by opracować maści lecznicze, które przedostawałyby się przez czaszkę i docierały do zatok. Być może właśnie znaleźliśmy miejsce, w którym rozpoczyna się stan zapalny powodujący wiele chorób neuroimmunologicznych i być może będziemy w stanie coś z tym zrobić, dodaje Kipnis.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.