Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Herself to rzeźba w formie sukienki, którą należy uznać za pierwszy na świecie element garderoby oczyszczający powietrze.

Jak by nie patrzeć, choć powstała z betonowej mieszanki w spreju, prototypowa suknia jest bardzo piękna. Stanowi efekt kilkuletniej współpracy Uniwersytetów w Sheffield i Ulsterze, a także Londyńskiego College'u Mody. Jak napisano na witrynie projektu Catalytic Clothing, w swoim pobliżu Herself absorbuje zanieczyszczenia z powietrza. Na razie nie wiadomo, jak suknia działa. Amy Dusto z serwisu Discovery News podejrzewa jednak, że na podobnej zasadzie jak przezroczysty beton włoskiej firmy Italcementi, który stanowi połączenie cementu, żywic, żwiru i piasku. Materiał ten zadebiutował we włoskim pawilonie na zeszłorocznym Expo w Szanghaju. Przyjazny środowisku budynek, w którym go użyto, przypominał olbrzymi lampion, widać było bowiem prześwitujące przez niego światło. Niedawno wynalazek pojawił się też w Europie. W jego przypadku światło stanowi katalizator, przyspieszający zachodzenie reakcji między tlenkiem tytanu(IV) a zanieczyszczeniami powietrza. Zgodnie z doniesieniami, w ten sposób udaje się obniżyć stężenie tlenku węgla i tlenku azotu(IV) aż o 65%.

Pomysłodawcy i wykonawcy sukni mają nadzieję, że w przyszłości 40 kobiet ubranych w Herself (lub ludzi w podobnie działającej odzieży) w minutę oczyści 2 metry sześcienne powietrza. Stanie się tak pod warunkiem, że skupią się na metrze kwadratowym podłoża. Mało wykonalne, chyba że weźmie się pod uwagę rekordy liczby osób, które zmieszczą się naraz np. w małym fiacie. Pozostaje mieć nadzieję, że naukowcy szybko ulepszą swoją technologię...

Pod wskazanym adresem można obejrzeć zdjęcia sukni oraz zapisane na tablicy opinie o niej, wyrażane przez zwiedzających wystawę.

Share this post


Link to post
Share on other sites
  Pomysłodawcy i wykonawcy sukni mają nadzieję, że w przyszłości 40 kobiet ubranych w Herself (lub ludzi w podobnie działającej odzieży) w minutę oczyści 2 metry sześcienne powietrza. 

...ale bzdura, oczyszczanie powietrza zostawmy filtrom węglowym i klimatyzacji a na  zewnątrz drzewom, trawie i deszczowi .

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Oświetlając czerwonym światłem krew przepływającą przez zmodyfikowane sztuczne płuco (oksygenator membranowy), można usunąć z niej tlenek węgla (CO). Zespół z Massachusetts General Hospital i Harvardzkiej Szkoły Medycznej opisał urządzenie i testy na szczurach na łamach Science Translational Medicine.
      Tlenek węgla jest toksyczny. Jego toksyczność wynika z większego niż tlen powinowactwa do hemoglobiny erytrocytów. CO tworzy z Hb połączenie zwane karboksyhemoglobiną. Jest ono trwalsze od służącej do transportu tlenu oksyhemoglobiny. Obecnie zatrucie CO leczy się, podając 100% tlen, niekiedy w komorze hiperbarycznej. W swoim urządzeniu Amerykanie wykorzystali czerwone światło.
      Już dawno temu naukowcy odkryli, że światło widzialne może osłabić wiązanie między CO a hemoglobiną, pozwalając, by tlen zajął miejsce tlenku węgla. Dotąd jednak nie badano dogłębnie metod wykorzystania światła u pacjentów z zatruciem CO.
      Podczas eksperymentów zespół Luki Zazzerona odkrył, że otwarcie klatki piersiowej szczura i oświetlenie płuc czerwonym światłem pomaga usunąć CO. Technika nie działa jednak u ludzi, bo nasze płuca są mniej przezroczyste. Akademicy wpadli więc na pomysł, by połączyć światło ze sztucznym płucem.
      Początkowo podczas testów krew z CO "przepuszczano" przez zwykłe oksygenatory. W tych eksperymentach usuwanie CO nie było jednak zwiększone przez fototerapię, bo urządzenia dostępne w handlu nie są zaprojektowane w taki sposób, by dało się wystawiać krew na oddziaływanie światła.
      Ekipa zaczęła więc wprowadzać modyfikacje. Oksygenatory pierwszej generacji ponownie nie zapewniały optymalnego transferu tlenu. Okazało się, że da się go osiągnąć, sięgając po membrany kapilarne (ang. capillary membrane). Wykorzystanie przezroczystego szkła akrylowego (pleksi) umożliwiało swobodną penetrację światła. Eksperymenty pokazały, że czerwone światło jest skuteczniejsze niż zielone i niebieskie w dysocjowaniu CO od hemoglobiny w krwi przepływającej przez oksygenator. W porównaniu do wentylacji czystym tlenem, dodanie pozaustrojowego eliminowania CO za pomocą fototerapii (ang. extracorporeal removal of CO with phototherapy, ECCOR-P) podwajało tempo usuwania tlenku węgla u zatrutych szczurów z normalnymi płucami.
      Kiedy u gryzoni przy zatruciu CO występowało ostre uszkodzenie płuc, urządzenie potrajało prędkość usuwania CO i zwiększało przeżywalność (w porównaniu do grupy kontrolnej).
      Naukowcy podkreślają, że potrzebne są dalsze badania, które pokażą, czy ludzie reagują podobnie.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Tufts University stworzono magnetyczne kompozyty elastomerowe, które poruszają się w różny sposób w odpowiedzi na światło. Z takich materiałów można by produkować wiele różnych urządzeń, od prostych silników i zaworów po ogniwa fotowoltaiczne samodzielnie kierujące się w stronę światła słonecznego.
      Znamy wiele naturalnych przypadków reakcji na światło. Wystarczy przypomnieć sobie kwiaty czy liście zwracające się w stronę słońca. Materiały, które zostały wykorzystane przez naukowców z Tufts wykorzystują temperaturę Curie, czyli granicę temperatury, przy której ferromagnetyk zmienia swoje właściwości. Zmiana temperatury powoduje utratę i odzyskanie właściwości magnetycznych. Biopolimery i elastomery wzbogacone ferromagnetykiem CrO2 po wystawieniu ich na działanie promienia lasera czy promieni słonecznych ogrzewają się, tracą właściwości magnetyczne, a gdy się schłodzą, odzyskują te właściwości. Materiały takie w odpowiedzi na obecność pola magnetycznego w zależności od kształtu, mogą wykonywać proste ruchy, jak zginanie się, zwijanie czy zwiększanie swojej powierzchni. Możemy połączyć te proste ruchy w bardziej złożone, jak pełzanie, chodzenie czy pływanie. A wszystko można kontrolować bezprzewodowo, za pomocą światła, mówi profesor Fiorenzo Omenetto.
      Zespół Omenetto zaprezentował działanie wspomnianych materiałów tworząc elastyczne chwytaki, które w odpowiedzi na światło łapały i puszczały przedmioty. Jedną z zalet takich materiałów jest fakt, że możemy selektywnie aktywować fragment ich struktury poprzez skoncentrowanie na nich światła, mówi jedna z autorek badań, Meng Li. I w przeciwieństwie do innych materiałów pobudzanych światłem, które bazują na ciekłych kryształach, nasze materiały mogą poruszać się od lub do źródła światła. Wszystko to pozwala na budowę zarówno dużych, jak i małych obiektów wykonujących złożone, skoordynowane ruchy, dodaje uczona.
      Naukowcy stworzyli prosty mechanizm, który nazwali „silnikiem Curie”. Materiał w kształcie okręgu został zamocowany na osi i umieszczony w pobliżu stałego magnesu. gdy na fragment okręgu padło światło lasera, utracił on właściwości magnetyczne, doszło do zaburzenia równowagi sił i okrąg się obrócił. Wówczas oświetlony dotychczas fragment znalazł się w cieniu, odzyskał właściwości magnetyczne, a utracił je fragment obok, który znalazł się w promieniu lasera. W ten sposób prosty silnik ciągle się obracał.
      Dobierając odpowiednio kształt materiału, właściwości światła i pola magnetycznego, możemy teoretycznie uzyskać bardziej złożone i precyzyjne ruchu, jak zwijanie i rozwijanie, przełączanie zaworów w mikrokanalikach z płynami, możemy napędzać silniki w skali nano i wiele innych rzeczy, mówi Omenetto.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na fińskim Aalto University uzyskano kondensat Bosego-Einsteina stworzony ze światła i plazmonów powierzchniowych. Ich wzajemne oddziaływanie tworzy polarytony plazmonów powierzchniowych.
      Przed niemal stu laty Einstein i Bose przewidzieli, że prawa mechaniki kwantowej mogą spowodować, iż duże grupy cząstek mogą zachowywać się tak, jakby były jedną cząstką. Zjawisko to nazwano kondensacją Bosego-Einsteina. Pierwszy kondensat tego typu udało się uzyskać dopiero w 1995 roku.
      Kondensaty uzyskiwano już wielokrotnie i w różnych konfiguracjach, jednak naukowcy ciągle nad nimi pracują. Chcą bowiem uzyskiwać je szybciej, w wyższych temperaturach i mniejszej skali. Mają bowiem nadzieję na praktyczne ich wykorzystanie. Z kondensatu Bosego-Einsteina można by stworzyć ekstremalnie małe źródło światła, które niezwykle szybko będzie przetwarzało dane.
      Fińscy uczeni poinformowali o stworzeniu kondensatu Bosego-Einsteina ze światła i elektronów poruszających się na powierzchni złotych nanopręcików. W przeciwieństwie do większości wcześniej uzyskiwanych kondensatów ten z Aalto, jako że złożony jest głównie ze światła, pojawia się w temperaturze pokojowej, nie trzeba całości schładzać do temperatur bliskich zera absolutnego.
      Korzystając ze współczesnych metod produkcyjnych jesteśmy w stanie w łatwy sposób uzyskać macierz z nanopręcików. W ich pobliżu można skupiać światło na bardzo małych powierzchniach, mniejszych nawet od długości fali światła w próżni. Te właściwości dają nam interesujące perspektywy dla przyszłych badań i zastosowań praktycznych nowego kondensatu, mówi profesor Päivi Törmä.
      Głównym problemem związanym z nowym rodzajem kondensatu jest fakt, że błyskawicznie się on pojawia i znika. Z naszych wyliczeń wynika, że czas jego życia jest liczony w pikosekundach, wyjaśnia doktorant Antti Moilanen. Naukowcy musieli więc wymyślić sposób na udowodnienie istnienia czegoś, co znika po bilionowych części sekundy. Wpadli na pomysł, by zmusić kondensat do poruszania się. Kondensat powoduje, że złote nanopręciki emitują światło. Obserwując to światło możemy badać zmiany kondensatu w czasie, dodaje Tommi Hakala. Emitowane światło jest podobne do światła laserowego. Możemy zmieniać odległości pomiędzy nanopręcikami, co pozwala nam na zdecydowanie, czy mamy do czynienia z kondensacją Bosego-Einsteina czy z pojawieniem się zwykłego światła laserowego. To są dwa bardzo zbliżone zjawiska fizyczne, a kluczowym jest możliwość odróżnienia ich od siebie. Oba nadają się też do odmiennych zastosowań, mówi profesor Törmä.
      Światło laserowe i kondensacja Bosego-Einsteina dają jasne promienie, jednak koherencje światła mają różne właściwości. To zaś wpływa na sposób, w jaki można manipulować światłem w zależności od wymaganych zastosowań. Kondensat pozwala na uzyskiwanie niezwykle krótkich impulsów światła, które mogą zostać wykorzystane do szybkiego przekazywania i przetwarzania informacji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Doktor Julian Allwood i doktorant David Leal-Ayala z Univeristy of Cambridge udowodnili, że możliwe jest usunięcie toneru z papieru, który został zadrukowany przez drukarkę laserową. W procesie usuwania papier nie zostaje poważnie uszkodzony, dzięki czemu tę samą kartkę można wykorzystać nawet pięciokrotnie. Niewykluczone, że w niedalekiej przyszłości powstaną urządzenia, które będą potrafiły zarówno drukować jak i czyścić zadrukowany papier.
      „Teraz potrzebujemy kogoś, kto zbuduje prototyp. Dzięki niskoenergetycznym skanerom laserowym i drukarkom laserowym ponowne użycie papieru w biurze może być opłacalne“ - mówi Allwood.
      Niewykluczone, że nowa technika nie tylko przyniesie korzyści finansowe firmom i instytucjom, ale również przyczyni się do ochrony lasów, redukcji zużycia energii i emisji zanieczyszczeń, do których dochodzi w procesie produkcji papieru i jego pozbywania się, czy to w formie spalania, składowania czy recyklingu.
      Naukowcy, dzięki pomocy Bawarskiego Centrum Laserowego, przetestowali 10 różnych konfiguracji laserów. Zmieniano siłę impulsów i czas ich trwania, używając laserów pracujących w ultrafiolecie, podczerwieni i w paśmie widzialnym. Podczas eksperymentów pracowano ze standardowym papierem Canona pokrytym czarnym tuszem z drukarki laserowej HP. Takie materiały i sprzęt są najbardziej rozpowszechnione w biurach na całym świecie.
      Po oczyszczeniu z druku, papier był następnie analizowany przy użyciu skaningowego mikroskopu elektronowego, który pozwalał zbadać jego kolor oraz właściwości mechaniczne i chemiczne.
      Wstępne analizy wykazały, że rozpowszechnienie się techniki oczyszczania i ponownego wykorzystywania papieru może o co najmniej połowę obniżyć emisję zanieczyszczeń związaną z produkcją i recyklingiem papieru.
    • By KopalniaWiedzy.pl
      IBM pokaże dzisiaj prototypowy optyczny układ scalony „Holey Optochip“. To pierwszy równoległy optyczny nadajnik-odbiornik pracujący z prędkością terabita na sekundę. Urządzenie działa zatem ośmiokrotnie szybciej niż inne tego typu kości. Układ pozwala na tak szybki transfer danych, że mógłby obsłużyć jednocześnie 100 000 typowych użytkowników internetu. Za jego pomocą można by w ciągu około godziny przesłać zawartość Biblioteki Kongresu USA, największej biblioteki świata.
      Holey Optochip powstał dzięki wywierceniu 48 otworów w standardowym układzie CMOS. Dało to dostęp do 24 optycznych nadajników i 24 optycznych odbiorników. Przy tworzeniu kości zwrócono też uwagę na pobór mocy. Jest on jednym z najbardziej energooszczędnych układów pod względem ilości energii potrzebnej do przesłania jednego bita informacji. Holey Optochip potrzebuje do pracy zaledwie 5 watów.
      Cały układ mierzy zaledwie 5,2x5,8 mm. Odbiornikami sygnału są fotodiody, a nadajnikami standardowe lasery półprzewodnikowe VCSEL pracujące emitujące światło o długości fali 850 nm.
×
×
  • Create New...