Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Gdy pacjentom tuż po udarze niedokrwiennym podawano Prozac (fluoksetynę), selektywny inhibitor zwrotnego wychwytu serotoniny, szybciej odzyskiwali mobilność i po 3 miesiącach byli bardziej niezależni od chorych, którzy zażywali placebo.

Wyniki francuskiego studium z udziałem 118 osób w wieku od 18 do 85 lat opublikowano właśnie w piśmie The Lancet Neurology. Po 90 dniach farmakoterapii, która rozpoczynała się 5-10 dni od początku udaru, okazało się, że pacjenci zażywający doustnie 20 mg fluoksetyny dziennie odzyskali funkcje kończyn dolnych i górnych w stopniu znacznie większym niż grupa kontrolna. Częściej też radzili sobie bez pomocy innych. U wszystkich badanych w wyniku udaru wystąpiła umiarkowana-głęboka niesprawność ruchowa. Francuzi podkreślają, że wynikiem zawału mózgu często bywa porażenie połowicze lub niedowład mięśni jednej połowy ciała. Już wcześniej kilka niewielkich badań sugerowało, że fluoksetyna wspomaga rehabilitację ruchową, ale nikt nie znał jej dokładnej użyteczności klinicznej.
Na początku chorzy uzyskiwali w Skali Pomiaru Wydolności Fizycznej po Udarze Mózgu Fugl-Meyer (ang. Fugl-Meyer Motor Scale, FMMS) wynik od 55 punktów w dół. W okresie od zerowego do 90. dnia eksperymentu monitorowano zmiany w punktacji.

W grupie przyjmującej Prozac występowały łagodne i rzadkie skutki uboczne, jednak należy zauważyć, że odnotowano w niej więcej przypadków nudności i biegunki niż w grupie placebo.

W przyszłości zespół profesora François Cholleta zamierza dokładniej przeanalizować mechanizm oddziaływania inhibitorów zwrotnego wychwytu serotoniny na chorych po przebytym udarze niedokrwiennym. Obecnie antydepresanty są stosowane w leczeniu obniżenia nastroju, które bywa dość częstym skutkiem udaru. Wiele wskazuje na to, że ich podawanie prowadziłoby do dwojakich korzyści.

Share this post


Link to post
Share on other sites

Więc oprócz "chęci życia" kolejny atut fluoeksetyny. Ciekawe ile jeszcze niespodzianek kryją psychotropy..

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wielokrotnie mogliśmy się przekonać, że jeśli nie używamy jakichś mięśni, to one zanikają. Jeszcze do niedawna naukowcy sądzili, że wraz z zanikaniem mięśni zanikają też jądra komórek, które je tworzyły. Jednak z najnowszego artykułu opublikowanego we Frontiers in Physiology dowiadujemy się, że jądra komórkowe, które zyskaliśmy podczas treningu, zostają zachowane, nawet jeśli włókna mięśniowe zanikają.
      Te pozostałe jądra działają jak „pamięć” mięśni, dzięki której, gdy wrócimy do treningu, szybciej jesteśmy w stanie mięśnie odzyskać. Naukowcy sądzą, że mechanizm ten ma zapobiegać zbytniej utracie masy mięśniowej w późniejszym wieku, gdy nie jesteśmy już tak aktywni, co w wieku nastoletnim. Wskazuje to również, że łatwo jest przeoczyć sportowca, który oszukuje i wspomaga rozwój mięśni środkami dopingującymi.
      Największe komórki w ciele człowieka, to właśnie komórki mięśniowe. W mięśniach poprzecznie prążkowanych tworzą one syncytia, czyli więlojądrowe komórki powstające poprzez połączeni luźnych komórek jednojądrowych. Syncytia zachowują się jak jedna wielka komórka. Syncytia występują w sercu, kościach czy łożysku. Jednak największe komórki i największe syncytia znajdziemy w naszych mięśniach, mówi profesor Lawrence Schwartz z University of Massachusetts.
      Wzrostowi mięśni towarzyszy dodawanie nowych jąder komórkowych z komórek macierzystych. Pozwala to na zaspokojenie zapotrzebowania rosnących komórek. To doprowadziło do pojawienia się hipotezy, każde jądro kontroluje ściśle zdefiniowaną objętość cytoplazmy, więc gdy masa mięśniowa się zmniejsza, czy to wskutek choroby czy ich nieużywania, zmniejsza się też liczba jąder komórek mięśni, dodaje uczony. Przypuszczenia takie miały o tyle mocne podstawy, że naukowcy badający tkankę mięśniową ulegającą atrofii donosili i obecnych w nich rozpadających się jądrach komórkowych. Dopiero jednak najnowsze techniki badawcze pozwoliły stwierdzić, że te rozpadające się jądra komórkowe nie pochodzą z komórek mięśni, ale z innych komórek, które pojawiły się w przeżywającej problemy tkance mięśniowej.
      Dwa niezależne badania, jedno przeprowadzone na gryzoniach, a drugie na owadach, wykazały, że podczas atrofii włókien mięśniowych nie dochodzi do utraty jąder komórkowych, stwierdza Schwartz w swoim artykule. Niewykluczone, że jądro komórkowe, które pojawiło się w mięśniach, pozostaje w nich na zawsze. Profesor Schwartz nie jest zaskoczony takimi wynikami. Mięśnie ulegają uszkodzeniu podczas intensywnych ćwiczeń, często zachodzą w nich zmiany związane z dostępnością pożywienia i innymi czynnikami środowiskowymi prowadzącymi do atrofii. Nie przetrwałyby długo, gdyby przy każdym takim zdarzeniu traciły jądra komórkowe, stwierdza.
      Skoro więc jądra komórkowe pozostają, to wiemy już, dlaczego łatwo jest odzyskać raz utraconą tkankę mięśniową. Dobrze udokumentowany jest fakt, że jest znacznie łatwiej odzyskać pewien poziom utraconej masy mięśniowej niż ją zbudować od podstaw, nawet jeśli przez długi czas nie ćwiczyliśmy. Innymi słowy, zamiast stwierdzać, że nieużywane mięśnie zanikają, powinniśmy powiedzieć, że nieużywane mięśnie zanikają, dopóki nie zaczniemy ich znowu używać.
      Odkrycie to pokazuje, jak ważne jest zbudowanie masy mięśniowej w młodości. Wówczas jesteśmy bardziej aktywni fizycznie, a wzrost masy mięśniowej jest wspomagany poprzez hormony, większy apetyt i duże zapasy komórek macierzystych. To idealny moment, by zbudować sobie zapas jąder komórkowych w mięśniach. Mogą się one przydać po wielu latach, gdy będziemy potrzebowali szybko nadrobić utraconą masę mięśniową, co pomoże nam w zachowaniu dobrego stanu zdrowia i niezależności w sędziwym wieku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Miomezyna to małe białko, które jest jednym z czynników stabilizujących miofibryle - włókienka kurczliwe mięśni. Wykorzystując kilka różnych technik, naukowcy z European Molecular Biology Laboratory (EMBL) w Hamburgu wykazali, że w pracujących mięśniach elastyczna część tego białka rozciąga się aż 2,5-krotnie.
      Ogony dwóch cząsteczek miomezyny tworzą elastyczne mostki między pęczkami włókien mięśniowych. Na każdym z ogonów znajdują się domeny immunoglobulinopodobne rozmieszczone na helisie alfa - trójwymiarowej strukturze w kształcie taśmy skręconej wzdłuż poprzecznej osi (całość przypomina koraliki nanizane na nitkę). Gdy białko jest rozciągane, wstęga się rozplata.
      Podczas badań zachowania miomezyny Niemcy posłużyli się krystalografią rentgenowską, niskokątowym rozpraszaniem promieniowania X (SAXS – Small Angle X-ray Scattering), a także mikroskopami elektronowym i sił atomowych.
      W przyszłości zespół Matthiasa Wilmannsa chce odtworzyć budowę całego filamentu miomezynowego oraz zbadać jego działanie w żywym organizmie.
       
       
    • By KopalniaWiedzy.pl
      W artykule, który ukazał się w styczniowym numerze pisma Cell Metabolism, naukowcy opisali związek kluczowy dla wzrostu ćwiczonych i używanych mięśni. Surowiczy czynnik reakcji (ang. serum response factor, Srf), bo o nim mowa, przekłada sygnał mechaniczny na chemiczny.
      Sygnał z włókien mięśniowych kontroluje zachowanie komórek progenitorowych i ich udział we wzroście mięśnia - wyjaśnia Athanassia Sotiropoulos z Inserm. Komórki progenitorowe przypominają komórki macierzyste, ale ze względu na częściową specjalizację mogą się przekształcić nie w jakikolwiek, lecz w jeden lub co najwyżej kilka typów komórek.
      Wcześniejsze badania Francuzów na myszach i ludziach wykazały, że stężenie Srf spada z wiekiem, dlatego akademicy przypuszczali, że jest to przyczyną atrofii mięśni podczas starzenia. Mechanizm działania czynnika okazał się jednak inny niż zakładano. Naukowcy wiedzieli, że Srf kontroluje aktywność wielu genów włókien mięśniowych, ale nie mieli pojęcia, że potrafi wpływać na działanie mięśniowych komórek satelitarnych (komórek progenitorowych, które biorą udział w regeneracji uszkodzonego mięśnia).
      Podczas eksperymentów Sotiropoulos zademonstrowała, że myszy, u których w mięśniach nie występował Srf, pod wpływem obciążenia nie rozbudowywały muskulatury. Do komórek satelitarnych nie docierał sygnał, aby się dzieliły i łączyły z istniejącymi włóknami. Francuzi sądzą, że trudno byłoby wyznaczyć optymalną dawkę surowiczego czynnika reakcji, dlatego lepiej regulować kontrolowane przez niego prostaglandyny czy interleukiny.
      Srf działa m.in. na gen COX2 (cyklooksygenazy-2). Ponieważ inhibitorem cyklooksygenazy-2 jest choćby popularny środek przeciwbólowy i przeciwzapalny ibuprofen, warto się zastanowić, czy nie hamuje on przypadkiem regeneracji mięśni.
    • By KopalniaWiedzy.pl
      Wydajność mięśni zależy m.in. od zdolności wykorzystania węglowodanów jako źródła energii. Ćwiczenia wpływają na nią korzystnie, a otyłość czy przewlekłe choroby wręcz przeciwnie. Naukowcy z Sanford-Burnham Medical Research Institute odkryli mechanizm, dzięki któremu można u myszy przeprogramować geny metaboliczne mięśni, wpływając na ich umiejętność zużywania cukrów. Niewykluczone, że w ten sposób będzie się w przyszłości zapobiegać bądź leczyć cukrzycę, zespół metaboliczny i otyłość.
      Zasadniczo te transgeniczne myszy są w stanie magazynować węglowodany i spalać je w stopniu występującym tylko u wytrenowanych sportowców - wyjaśnia dr Daniel P. Kelly.
      Mięśnie wyhodowanych przez Amerykanów myszy wytwarzają białko PPARβ/δ. Jest ono receptorem jądrowym, a więc czynnikiem transkrypcyjnym, który przez przyłączanie ligandów reguluje ekspresję genów metabolicznych mięśni w odpowiedzi na bodźce zewnętrzne.
      Wcześniejsze badania pokazały, że gryzonie z wyższym poziomem PPARβ/δ w mięśniach cechuje większa wydolność wysiłkowa. Jak napisali w artykule opublikowanym na łamach Genes & Development członkowie zespołu Kelly'ego, mięśnie zwierząt z grupy PPARβ/δ przewyższają mięśnie zwykłych zwierząt pod względem zdolności wychwytywania cukru z krwiobiegu, a także magazynowania go i wykorzystywania w formie energii. Myszy PPARβ/δ są supersprawne. W porównaniu do przeciętnych gryzoni, biegną dłużej i szybciej, a w ich mięśniach powstaje mniej kwasu mlekowego.
      Główną rolę w mechanizmie odkrytym przez ekipę z Sanford-Burnham Medical Research Institute odgrywają kompleksy tworzone przez 3 białka: 1) PPARβ/δ, 2) AMPK (kinazę aktywowaną 5'AMP) oraz 3) czynnik transkrypcyjny MEF2A, który pomaga w aktywowaniu miocytospecyficznych genów. Wspólnie białka włączają ekspresję genu kodującego dehydrogenazę mleczanową - enzym kierujący cukropochodne metabolity do mitochondriów, gdzie możliwe jest całkowite spalanie "surowca".
    • By KopalniaWiedzy.pl
      Jeszcze w łonie matki dzieci zaczynają jak aktorzy ćwiczyć mimikę twarzy: marszczą nos, unoszą brwi, wydymają usta. W miarę rozwoju płodu ruchy twarzy stają się coraz bardziej złożone.
      Nadja Reissland podkreśla, że choć wcześniej wiedziano o płodowej mimice, nikt nie śledził postępów w zakresie jej złożoności. Badacze skorzystali z dobrodziejstw ultrasonografii 4D. W okresie między 24. a 35. tygodniem ciąży od czasu do czasu robili zdjęcia dwóm dziewczynkom. Dzięki temu zauważyli, jak pojedyncze, niezwiązane ze sobą ruchy stają się stopniowo złożonymi kombinacjami, powszechnie kojarzonymi z konkretnymi wyrazami twarzy.
      Brytyjczycy śledzili 19 rodzajów ruchów mięśni twarzy (unoszenie brwi, otwieranie ust itp.). Dodatkowo analizowali 2 zestawy ruchów: jeden związany ze śmiechem, a drugi z płaczem. Okazało się, że z czasem kombinacje, które miały je oznaczać, stawały się coraz bardziej złożone.
      W 24. tygodniu płody wykonywały głównie izolowane ruchy, np. rozchylały wargi. Potem coraz częściej łączyły je z innymi ruchami. Do 35. tygodnia ciąży liczba związanych ze śmiechem/płaczem kombinacji 3-4-elementowych przewyższała liczbę połączeń 1-2-elementowych. Podobny trend występował w odniesieniu do 19 analizowanych typów ruchów; tutaj łączenie także obserwowano coraz częściej i na coraz większą skalę.
      Reissland twierdzi, że wyrazu twarzy nie należy mylić z doświadczaniem danej emocji. Na razie [dzieci] nie mają koniecznego do tego aparatu poznawczego. Brytyjka powołuje się na przykład ssania kciuka czy naśladowania ruchów oddechowych w łonie matki. Wszystko to ćwiczenia umiejętności niezbędnych po narodzinach: jedzenia, oddychania lub funkcjonowania w społecznym świecie.
×
×
  • Create New...