Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Gwiazda neutronowa w laboratorium
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Gdy rozpędzone niemal do prędkości światła jony ołowiu lub złota wpadną na siebie w czeluściach akceleratorów, na ułamki sekund tworzy się plazma kwarkowo-gluonowa. Zdaniem naukowców z Instytutu Fizyki Jądrowej PAN w Krakowie, dane eksperymentalne wskazują, że na arenie wydarzeń są tu obecni jeszcze inni, dotychczas niedoceniani aktorzy: fotony. Ich zderzenia prowadzą do emisji pozornie nadmiarowych cząstek, których obecności nie potrafiono wyjaśnić.
Plazma kwarkowo-gluonowa to bezsprzecznie najbardziej egzotyczny ze znanych nam stanów materii. W akceleratorze LHC w CERN pod Genewą tworzy się ona podczas centralnych zderzeń dwóch nadlatujących z naprzeciwka jonów ołowiu, poruszających się z prędkościami bardzo bliskimi prędkości światła. Kwarkowo-gluonowa zupa bywa też doprawiona innymi cząstkami. Niestety, opis teoretyczny przebiegu wydarzeń z udziałem plazmy oraz jej koktajlu nie w pełni odpowiadał danym zebranym w eksperymentach. W artykule opublikowanym na łamach czasopisma Physics Letters B grupa naukowców z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie wyjaśniła przyczynę zaobserwowanych rozbieżności. Dane zebrane w trakcie zderzeń jąder ołowiu w akceleratorze LHC, a także podczas zderzeń jąder złota w akceleratorze RHIC w Brookhaven National Laboratory koło Nowego Jorku, zaczynają się zgadzać z teorią, gdy w opisie zachodzących procesów uwzględni się zderzenia między fotonami otaczającymi oba oddziałujące ze sobą jony.
Z pewnym przymrużeniem oka można powiedzieć, że przy odpowiednio wielkich energiach masywne jony zderzają się nie tylko swoimi protonami i neutronami, ale nawet swoimi chmurami fotonów, mówi dr Mariola Kłusek-Gawenda (IFJ PAN) i od razu precyzuje: Przy opisie kolizji jonów w LHC już wcześniej uwzględnialiśmy zderzenia między fotonami. Dotyczyły one jednak tylko zderzeń ultraperyferyjnych, w których jony nie trafiają w siebie, lecz mijają się niezmienione, oddziałując wyłącznie własnymi polami elektromagnetycznymi. Nikt nie przypuszczał, że zderzenia fotonów mogą odgrywać jakąkolwiek rolę w brutalnych interakcjach, gdzie protony i neutrony dosłownie zlewają się w kwarkowo-gluonową zupę.
W warunkach znanych z codziennego życia fotony nie zderzają się ze sobą. Gdy jednak mamy do czynienia z masywnymi jonami rozpędzonymi niemal do prędkości światła, sytuacja staje się inna. Jądro złota zawiera 79 protonów, jądro ołowiu aż 82, ładunek elektryczny każdego jonu jest więc odpowiednio wiele razy większy od ładunku elementarnego. Nośnikami oddziaływań elektromagnetycznych są fotony, zatem każdy jon można traktować jako obiekt otoczony chmurą wielu fotonów. Co więcej, w akceleratorach RHIC i LHC jony poruszają się z prędkościami bliskimi prędkości światła. W rezultacie i one, i otaczająca je chmura fotonów, z punktu widzenia obserwatora w laboratorium sprawiają wrażenie niezwykle cienkich placków, spłaszczonych w kierunku ruchu. Z każdym przelotem takiego protonowo-neutronowego naleśnika wiąże się wyjątkowo gwałtowna oscylacja pól elektrycznego i magnetycznego.
W elektrodynamice kwantowej, teorii używanej do opisu elektromagnetyzmu z uwzględnieniem zjawisk kwantowych, istnieje maksymalna wartość krytyczna pola elektrycznego, rzędu dziesięć do szesnastej woltów na centymetr. Dotyczy ona statycznych pól elektrycznych. W przypadku zderzeń masywnych jąder atomowych w RHIC czy LHC mamy do czynienia z polami dynamicznymi, pojawiającymi się na zaledwie milionowe części jednej miliardowej jednej miliardowej sekundy. Przez tak ekstremalnie krótki czas pola elektryczne w zderzeniach jonów mogą być nawet stukrotnie silniejsze od wartości krytycznej.
W istocie pola elektryczne jonów zderzających się w LHC bądź RHIC są tak potężne, że pod ich wpływem powstają wirtualne fotony i dochodzi do ich zderzeń. W wyniku tych procesów w różnych punktach wokół jonów, gdzie wcześniej nie było niczego materialnego, powstają pary lepton-antylepton. Cząstki każdej pary rozbiegają się w charakterystyczny sposób: typowo w przeciwnych kierunkach i niemal prostopadle do pierwotnego kierunku ruchu jonów, wyjaśnia dr hab. Wolfgang Schäfer (IFJ PAN) i przypomina, że do rodziny leptonów są zaliczane elektrony oraz ich bardziej masywne odpowiedniki: miony i taony.
Interakcje fotonów i związana z nimi produkcja par lepton-antylepton są kluczowe w zderzeniach peryferyjnych. Kolizje tego typu krakowscy fizycy opisali już kilka lat wcześniej. Ku własnemu zaskoczeniu, teraz udało się im wykazać, że te same zjawiska odgrywają niemałą rolę również w bezpośrednich zderzeniach jąder, nawet centralnych. Z danych zebranych dla jąder złota w RHIC i jąder ołowiu w LHC wynika bowiem, że podczas takich zderzeń pojawia się pewna „nadmiarowa” liczba par elektron-pozyton, które stosunkowo wolno rozbiegają się w kierunkach niemal prostopadłych do wiązek jonów. Ich istnienie udało się wyjaśnić właśnie poprzez uwzględnienie produkcji par lepton-antylepton przez zderzające się fotony.
Prawdziwą wisienką na torcie okazał się dla nas fakt, że uzupełniając dotychczasowe narzędzia opisu zderzeń masywnych jonów o nasz formalizm zbudowany na tak zwanych funkcjach Wignera mogliśmy wreszcie wytłumaczyć, dlaczego detektory największych współczesnych eksperymentów akceleratorowych rejestrują takie a nie inne rozkłady leptonów i antyleptonów uciekających z miejsca kolizji jąder (dla ustalonej centralności zderzenia). Nasze rozumienie najważniejszych zachodzących tu procesów stało się bardziej kompletne, podsumowuje prof. dr hab. Antoni Szczurek (IFJ PAN).
Prace nad krakowskim modelem zderzeń foton-foton sfinansowano ze środków Narodowego Centrum Nauki. Model wzbudził zainteresowanie fizyków pracujących przy detektorach ATLAS i ALICE akceleratora LHC i zostanie użyty już w najbliższych analizach danych eksperymentalnych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Kanadyjsko-amerykański zespół badawczy znalazł dowody wskazujące, że materiał znajdujący się pod powierzchnią gwiazd neutronowych może być najtwardszym materiałem we wszechświecie. M. E. Caplan, A. S. Schneider i C. J. Horowitz opisali na łamach Physical Review Letters swoje symulacje i uzyskane wyniki.
Nie od dzisiaj wiadomo, że gwiazdy neutornowe charakteryzują się wyjątkowo duża gęstością. Wcześniejsze badania sugerowały, że w związku z tym, powierzchnia gwiazd neutronowych jest niezwykle wytrzymała. Teraz Caplan, Schneider i Horowitz twierdzą, że materiał położony bezpośrednio pod powierzchnią jest jeszcze twardszy niż ona sama.
Astrofizycy teoretyzują, że w gwiazdach neutronowych gęsto upakowane neutrony tworzą pod powierzchnią najróżniejsze kształty. Wiele z nich nazwano „makaronem”. Teraz uczeni postanowili sprawdzić, czy materiał ten może być bardziej gęsty i twardy niż powierzchnia gwiazdy.
Przeprowadzili liczne symulacje, które wykazały, że mamy tam do czynienia z najtwardszym materiałem we wszechświecie. Jest on 10 miliardów razy twardszy od stali. To jednak nie wszystko. Symulacje te dowodzą też, że gwiazdy neutronowe, poprzez swoje silne pole grawitacyjne, mogą zaburzać czasoprzestrzeń. A zaburzenia te są skutkiem nieregularnego charakteru „makaronu” wewnątrz gwiazd. Niewykluczone, że w przyszłości zaobserwujemy fale grawitacyjne wywoływane tymi zaburzeniami.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na Duke University stworzono prototyp diody termicznej, który zachowuje zalety takich urządzeń, a jednocześnie nie ma ich wad. Może stać się ona podstawą do stworzenia technologii, które znacznie udoskonalą zarówno ogniwa słoneczne jak i laptopy.
Dioda termiczna to urządzenie, które przewodzi ciepło tylko w jedną stronę. Pozwala zatem np. na odprowadzenie ciepła z danego kierunku i jednocześnie działa jak izolator, uniemożliwiając powrót energii cieplnej.
Dioty termiczne są produkowane z ciał stałych, jednak najbardziej efektywne są diody, które działają dzięki zjawisku zmiany fazy, polegające na parowaniu i skraplaniu. Diody zmiennofazowe odprowadzają nawet 100-krotnie więcej ciepła niż diody z ciał stałych. Jednak mają dwa poważne ograniczenia, które powodują, iż nie nadają się do wszystkich zastosowań. Po pierwsze, ich działanie zależy od grawitacji, po drugie zaś - muszą mieć kształt tuby. To wyklucza użycie zmiennofazowych diod np. w elektronice przenośnej, gdyż powinny tam działać niezależnie od orientacji urządzenia. Nie nadają się też np. do stosowania z panelami słonecznymi, ponieważ tam przydałyby się diody o dużych powierzchniach.
Profesor Chuan-Hua Chen z Duke University i jego zespół postanowili wykorzystać krople wody, które odskakują z powierzchni superhydrofobowych i przemieszczają się w stronę powierzchni superhydrofilowych. Przed kilkunastoma miesiącami to właśnie Chen jako pierwszy sfilmował zachowanie kropli wody na powierzchniach superhydrofobowych. Okazało się, że krople dosłownie odskakują z takich powierzchni.
Naukowcy przeprowadzili obecnie eksperyment, w ramach którego naprzeciwko materiału superhydrofobowego umieścili materiał superhydrofilowy.
Gdy powierzchnia superhydrofobowa jest chłodniejsza od superhydrofilowej zachodzi bardzo efektywny proces transportu ciepła, przypominający pocenie się, które odbiera ciepło z organizmu. Natomiast gdy materiał superhydrofobowy jest cieplejszy, transport ciepła zostaje zablokowany, a całość zachowuje się jak okno z dwiema szybami. Jako, że skaczące kropelki są niezwykle małe, wpływ grawitacji na nie jest pomijalny. A to oznacza, że urządzenia korzystające z takiej diody mogą być zorientowane w dowolnym kierunku - mówi Chen. Co więcej, taką diodę można łatwo skalować, zatem można będzie budować zarówno diody do chłodzenia smartfonów, jak i takie, które trafią na dachy budynków.
-
przez KopalniaWiedzy.pl
NASA poinformowała, że odkryty w Boże Narodzenie ubiegłego roku niezwykły rozbłysk gamma został spowodowany albo eksplozją oddalonej o miliardy lat supernowej nieznanego typu, albo też niezwykłą kolizją w naszej własnej galaktyce.
Agencja opublikowała właśnie dokument, opisujący obydwa możliwe wydarzenia.
Rozbłyski gamma to najpotężniejsze eksplozje we wszechświecie. W ciągu kilku sekund rozbłysk emituje więcej energii niż nasze Słońce wyprodukuje w czasie całego swojego życia.
„Rozbłysk bożonarodzeniowy" czyli GRB 101225A został odkryty w gwiazdozbiorze Andromedy przez Swift's Burst Alert Telescope. Ttrwał on co najmniej 28 minut, czyli niezwykle długo jak na tego typu wydarzenie. Obserwacje pozostałej po nim poświaty nie pozwoliły na dokładne określenie odległości miejsca eksplozji od Ziemi.
Naukowcy pracujący pod kierunkiem Christiny Thoene z Instituto de Astrofísica de Andalucía wysunęli teorię na temat przyczyn wybuchu. Ich zdaniem mogło do niego dojść w egzotycznym układzie podwójnym, gdzie gwiazda neutronowa obiegała zwykłą gwiazdę, która weszła w etap czerwonego olbrzyma, gwałtownie zwiększając swoją objętość. Gwiazda neutronowa znalazła się wewnątrz olbrzyma i w ciągu kilkunastu miesięcy została wchłonięta przez jego jądro. To przyczyniło się do powstania czarnej dziury i pojawienia się dwóch przeciwbieżnych strumieni cząstek poruszających się niemal z prędkością światła. Powstała też niewielka supernowa. Strumienie wyemitowały promienie gamma, które zaobserwowaliśmy jako rozbłysk.
Naukowcy obliczyli, że jeśli takie zdarzenie miało miejsce, to doszło do niego w odległości 5,5 miliarda lat świetlnych od Ziemi. W pobliżu zaobserwowano też obiekt, który może być słabo świecącą galaktyką.
Jednak zdaniem Serio Campany z Osservatorio Astronomico di Brera, powyższa interpretacja nie jest jedyną możliwą. Jeśli zaobserwowany obiekt rzeczywiście jest galaktyką, dowiedziona zostanie teoria o systemie podwójnym. Jeśli jednak odkryty zostanie pulsar, teoria Thoene nie utrzyma się.
Campana i jego zespół zaproponowali inne możliwe rozwiązanie. Ich zdaniem duży podobny do komety obiekt został zniszczony przez siły pływowe, a jego resztki uderzyły w gwiazdę neutronową znajdującą się w odległości zaledwie 10 000 lat świetlnych od Ziemi. W tym scenariuszu zakłada się, że obiekt, który uległ zniszczeniu, musiał mieć masę równą połowie masy planety karłowatej Ceres. Gdy jego szczątki uderzyły w gwiazdę, doszło do rozbłysku gamma.
Należący do NASA Swift's Burst Alert Telescope został wystrzelony w 2004 roku. Urządzenie znacznie zwiększyło naszą wiedzę o rozbłyskach gamma. Jak pokazuje niezwykły GRB 101225A w tej materii wciąż jest bardzo wiele do odkrycia.
-
przez KopalniaWiedzy.pl
Dwaj profesorowie z Izraela, Ehud Nakar i Tsvi Piran, opisują z najnowszym numerze Nature wyniki swoich symulacji dotyczących kolizji gwiazd neutronowych. Zdaniem uczonych, zderzenie takich gwiazd powoduje pojawienie się cząsteczek poruszających się z prędkością od 0,1 do 0,5 prędkości światła. Ponadto, co bardziej interesujące, podczas kolizji powinny powstać mierzalne fale grawitacyjne.
Istnienie fal grawitacyjnych przewidział Einstein w swojej ogólnej teorii względności. Fale takie mają być wynikiem zaginania czasoprzestrzeni. Jednak dotychczas nie udało się potwierdzić ich istnienia. Problem w tym, że, podobnie jak fale na wodzie, zanikają one w miarę oddalania się od miejsca narodzin. Zanim więc dotrą do Ziemi mogą być na tyle słabe, że nasze instrumenty ich nie rejestrują. Ponadto mogą one istnieć przez krótki czas.
Nakar i Piran dowodzą jednak, że fale grawitacyjne mogą wędrować w przestrzeni kosmicznej całymi miesiącami.
Obecnie w USA i Holandii powstają, niezależnie, dwa teleskopy, których celem będzie poszukiwanie fal grawitacyjnych.
Izraelscy uczeni mówią jednak, że już dysponują dowodem na potwierdzenie swojej teorii. Twierdzą, że odkryte przez Jeffreya Bowera nieregularne radioźródło RT 19870422 ma wszystkie właściwości źródła fal grawitacyjnych, na jakie wskazuje przeprowadzona symulacja. Niestety, znajduje się ono zbyt daleko, by zarejestrować same fale.
Dlatego też, zdaniem Izraelczyków, poszukując w przyszłości fal grawitacyjnych, będziemy musieli szukać nieodległych systemów gwiazd neutronowych.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.