Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Odkąd Mendelejew odkrył, że właściwości pierwiastków układają się w regularny sposób, wiele ich cech można było po prostu przewidzieć. Niestety, nie wszystko i do dziś niektóre przewidywania nie zostały potwierdzone, choć intensywne badania trwają.

Wiele tajemnic kryje się jeszcze we właściwościach izotopów pierwiastków, czyli form posiadających różną liczbę neutronów w jądrze. Część izotopów jest stabilna, część się wolniej lub szybciej rozpada, ale pierwiastki cięższe od ołowiu nie posiadają w ogóle izotopów stabilnych, czyli są mniej lub bardziej promieniotwórcze.

Pierwiastki zyskują stabilność wtedy, gdy ich protony lub neutrony występują w pewnych określonych liczbach, czyli w pełni „zamykają" powłoki nukleonowe. Te liczby nazywane są magicznymi, a pierwiastek z obiema liczbami (protonów i neutronów) magicznymi będzie superstabilny. Tak głosi hipoteza tak zwanej „wyspy stabilności", której naukowcy szukają od lat. Przewidywana wyspa stabilności na układzie okresowym pierwiastków prezentuje się właśnie jako zamknięty obszar wśród izotopów niestabilnych.

Nad uzyskaniem stabilnych izotopów superciężkich pierwiastków pracuje międzynarodowy zespół, który choć nie dopłynął jeszcze do „wyspy", osiągnął wiele sukcesów. Pracuje w nim dwudziestu naukowców z Berkeley Lab, UC Berkeley, Lawrence Livermore National Laboratory, niemieckiego GSI Helmholtz Center for Heavy Ion Research, Oregon State University, i norweskiego Institute for Energy Technology; pod kierunkiem Heino Nitsche z Berkeley Lab's Nuclear Science Division (NSD).

Ostatnie ich osiągnięcie to uzyskanie sześciu nowych izotopów pierwiastków: ruthefordu (l.a. 104), seaborgu (106), hasu (108), darmsztadtu (110), copernicium (112) oraz nie posiadającego jeszcze nazwy pierwiastka o liczbie atomowej 114 (nazywanego tymczasowo od liczby protonów ununquadium). Nowe pierwiastki „produkuje" się przy pomocy cyklotronu, ta grupa używa 88-calowego cyklotronu w Berkeley. Nowe izotopy uzyskano bombardując tarcze z plutonu 242 (posiadającego 242 nukleony: protony i neutrony) strumieniem rozpędzonych cząsteczek ciężkiego wapnia 48. Poza intensywnym bombardowaniem ze ściśle określonymi parametrami poszukiwanie nowych izotopów wymaga odpowiedniej aparatury detektora, który odsieje nieprzydatne cząstki i wyłowi nieliczne interesujące, poszukiwane atomy.

Najciekawszym na razie osiągnięciem zespołu jest nowy izotop ununquadium (większość jego członków pracowała w zespole, który ten pierwiastek odkrył). Najcięższy do tej pory odkryty izotop to ununquadium 298, wywołuje on tak wiele zainteresowania, ponieważ zbliża się już do od dawna poszukiwanego ununquadium 298. Czemu akurat 298? Ponieważ, według dotychczasowych przewidywań taki właśnie izotop osiągnie mityczną wyspę stabilności, czyli nie będzie podlegał rozpadowi promieniotwórczego.

Sami członkowie zespołu studzą jednak entuzjazm i to z dwóch powodów. Po pierwsze, uważają, że do stworzenia ununquadium 289 posiadany przez nich cyklotron jest zbyt słaby i potrzebne będą większe moce. Po drugie, niektóre teorie przewidują, że stabilność mogą osiągnąć dopiero pierwiastki posiadające w jądrze 120 lub 126 protonów. A do nich jeszcze jest dość daleko. Wygląda więc, że odyseja po morzu izotopów w poszukiwaniu wyspy stabilności jeszcze potrwa.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Wygląda więc, że odyseja po morzu izotopów w poszukiwaniu wyspy stabilności jeszcze potrwa.[/size] 

Same spadną na Nas , jak dotrze tutaj materia z rozbłysku supernowej w strzelcu (światło dotarło w 1987r a prędkość materii to 95%c).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe czy faktycznie odkryją coś fajnego, czy raczej przesuwanie granicy 'wyspy stabilności' służy nieprzerwanemu ściąganiu grantowych pieniędzy :)

 

No ale wiadomo - w dzisiejszych czasach ciężko jest odkryć coś nowego. Poza tym należy pamiętać że większość odkryć dokonywana była przez przypadek, także celowe badania mające prowadzić do odkryć z jednej strony wydają się pozbawione sensu. Ale oczywiście z drugiej strony, wiele rzeczy faktycznie można przewidzieć i wtedy w urealnieniu teorii mogą pomóc takie właśnie kierunkowe badania..

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
No ale wiadomo - w dzisiejszych czasach ciężko jest odkryć coś nowego.[/size] 

.... :):D  no jasne jak próbuje się odkryć coś starego, ale tak naprawdę to ty jesteś stosunkowo nowym zjawiskiem na tej planecie, odkryj więc samego siebie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"większość odkryć dokonywana była przez przypadek"

A to ciekawe. Myślałem że ciężką pracą a to jednak los. Więc wystarczy rzucać kostką i się dokona odkryć? Nobla dostaje się za przypadek. Ciekawa teoria, sama w sobie jest odkryciem. Przypadek czy praca?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  "większość odkryć dokonywana była przez przypadek"[/size]

To akurat się zgadza, trzeba zwrócić uwagę na słowo "odkryć" bo potem setki godzin to badania.

Najczęściej do odkryć dochodzi przy powtarzaniu eksperymentu ze sprawdzeniem cudzego odkrycia ( jest to nowe doświadczenie z lepszym , nowszym , w zakresie pomiarowym sprzętem  - wszyscy Wielcy Odkrywcy tak mieli).

Obecnie jest problem, bo narosło teoretyków którym coś się zdaje , ładują tam nasz szmal a potem  ....o nie wyszło , ale coś trzeba powiedzieć w uzasadnieniu więc tych np: nano rurek mozna by uzyć  do zrobienia instalacji wodnej w domku dla nano lalek (nie jest wazne czy nano lalki istnieją - zawsze mozna ich poszukać kolejnym grantem - oczywiście na plazach w ciepłych wodach pacyfiku).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy poszukujący „wyspy stabilności” odkryli nowy izotop darmsztadu i nowy stan wzbudzony kopernika-282. Stwierdzili jednocześnie, że „wyspy” należy szukać nie tam, gdzie przewidywały wcześniejsze teorie, ale nieco dalej. Wyprawa do wyspy stabilności obrała nowy kurs, stwierdził Anton Såmark-Roth z Uniwersytetu w Lund.
      W latach 60. pojawiły się teorie dotyczące możliwego istnienia superciężkich pierwiastków. Stwierdzono wtedy, że w okolicy nieznanego jeszcze wówczas pierwiastka o liczbie atomowej 114 powinna istnieć „wyspa stabilności”, gdzie superciężkie pierwiastki będą trwały dłużej.
      Najcięższym występującym w naturze pierwiastkiem jest uran, którego jądro zawiera 92 protony i 146 neutronów. Jądra cięższych pierwiastków, z powodu wzrastającej liczby protonów, są coraz bardziej niestabilne. Rozpadają się więc coraz szybciej, w ułamku sekundy. Jeśli jednak w jądrze pojawi się „magiczna liczba” protonów i/lub netronów, jądro takie staje się stabilne. Niedawno informowaliśmy, że CERN bada magię liczby 32. Pod koniec lat 60. fizycy teoretyczni przewidywali, że taka wyspa stabilności powinna istnieć wokół pierwiastka o liczbie atomowej 114.
      Obecnie najcięższym znanym nam pierwiastkiem jest zsyntetyzowany w 2002 roku oganeson. Jego liczba atomowa to 118. Bardzo trudno jest go uzyskać, a jeszcze trudniej badać, gdyż czas półrozpadu tego pierwiastka to około 1 milisekundy.
      To Święty Graal fizyki atomowej. Wielu naukowców marzy o odkryciu czegoś tak egzotycznego, jak długotrwały, a może nawet stabilny, superciężki pierwiastek, mówi Anton Såmark-Roth. Wszedł on w skład międzynarodowego zespołu pracującego pod kierunkiem profesora Dirka Rudolpha z Uniwersytetu w Lund.
      Naukowcy wzięli na warsztat pierwiastek flerow o liczbie atomowej 114, a konkretnie jego dwa lżejsze izotopy flerow-288 i flerow-286.
      W niemieckim Centrum Badań nad Ciężkimi Jonami (GSI Helmholtzzentrum für Schwerionenforschung) uczeni użyli synchrotronu, za pomocą którego przyspieszali do 10% prędkości światła atomy wapnia-48 i bombardowali nimi pluton-244. W ten sposób otrzymywali pojedyncze atomy flerowa i obserwowali ich rozpad. W czasie 18-dniowego eksperymentu zaobserwowali kilkadziesiąt takich rozpadów.
      W czasie badań zauważyli nowe, nieznane dotychczas drogi rozpadu tego pierwiastka. Szczególnie interesujące były dwie. Pierwsza z nich, w ramach której flerow-288 rozpadał się do kopernika-284, a ten do nieznanego wcześniej darmstadu-280. W drugim interesującym łańcuchu zaobserwowano rozpad flerowu-286 do wzbudzonego kopernika-282, który zawierał parzystą liczbę protonów i parzystą neutronów. Nigdy wcześniej nie zauważono takiego zjawiska we wzbudzonym superciężkim jądrze.
      Obserwacja obu tych łańcuchów oraz istnienie wzbudzonego kopernika-282 pozwala na opracowanie nowych modeli teoretycznych dotyczących zarówno flerowa-298, jak i wyspy stabilności.
      To były trudne, ale bardzo udane badania. Teraz wiemy, że wyspy stabilności powinniśmy poszukiwać nie w okolicach 114., ale 120. pierwiastka, który jeszcze nie został odkryty, mówi Såmark-Roth.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Do tablicy okresowej pierwiastków oficjalnie dodano dwa elementy o liczbach atomowych 114 i 116. Istnieją one mniej niż sekundę, po czym ulegają rozpadowi, ale dzięki badaniom nad nowymi pierwiastkami jesteśmy coraz bliżej tzw. wyspy stabilności, czyli znalezieniu jeszcze cięższych elementów, których stabilność ma wynosić całe dekady.
      Od dziesiątków lat wiadomo, że oba pierwiastki istnieją, jednak trudno było zdobyć ostatecznie przekonujący dowód. Przed kilkoma dniami komitet Joint Working Party on Discovery of Elements złożony z przedstawicieli International Union of Pure and Applied Chemistry oraz International Union of Pure and Applied Physics, zakończył trwające 3,5 roku badanie dowodów i zgodził się na wpisanie nowych elementów do tablicy okresowej.
      Z międzynarodowym komitetem współpracowały dwie grupy, jedna pod kierunkiem Jurija Oganessiana z instytutu badań nuklearnych (JINR) w Dubnej w Rosji, a druga prowadzona przez Kena Moody'ego z Lawrence Livermore National Laboratory. Uczeni tworzyli nowe atomy zderzając w akceleratorze w JINR atomy lżejszych pierwiastków. Element 116 powstał dzięki bombardowaniu kiuru (Cu, 96 protonów) jądrami wapnia (20 protonów). Pierwiastek 116 żył tylko przez kilka milisekund, a następnie rozpadł się na cząsteczkę alfa składającą się z dwóch protonów oraz dwóch neutronów i pierwiastek 114. Z kolei sam 114 uzyskano z bombardowania plutonu (94 protony) wapniem.
      Element 114 po około pół sekundy rozpadał się na copernicium, który sam jest nowym elementem w tablicy okresowej, dodanym doń w 2009 roku.
      Nowe elementy mają swoje tymczasowe nazwy. Ununquadium (114) oraz ununhexium (116). O samych pierwiastkach niewiele wiadomo, gdyż dotychczas udało się uzyskać tak małe ich ilości, że nie przeprowadzono niemal żadnych badań.
      Do wspomnianej powyżej wyspy stabilności jest coraz bliżej. Naukowy przewidują, że wyznacza ją pierwiastek o 120 lub 126 protonach w jądrze.
    • przez KopalniaWiedzy.pl
      W Lawrence Berkeley National Laboratory powstał nowy kompozytowy materiał, który ułatwi przechowywanie wodoru. Składa się on z nanocząsteczek metalicznego magnezu naniesionych na poli(metakrylan metylu). Najważniejszą właściwością kompozytu jest możliwość szybkiego wiązania i uwalniania wodoru w niewysokich temperaturach bez jednoczesnego występowania zjawiska utleniania metalu. To bardzo ważny krok, znacznie udoskonalający metody przechowywania wodoru na potrzebny produkcji energii.
      Nasza praca dowodzi, że jesteśmy w stanie zaprojektować nanokompozytowe materiały, które pokonują podstawowe bariery termodynamiczne i kinetyczne - mowi Jeff Urban, jeden z autorów badań. W pracach nad kompozytem brali też udział Christian Kisielowski, Ki-Joon Jeon, Anne Ruminski, Hoi Ri Moon i Rizia Bardhan.
      Szczegółowe informacje na temat nowego kompozytu zostały ujawnione w artykule "Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without heavy metal catalysts" w Nature Materials.
    • przez KopalniaWiedzy.pl
      Czy szkło może być wytrzymalsze od stali? Jak pokazują badania, tak, jeśli jest to „szkło metaliczne" (inaczej mówiąc: metal amorficzny). Niełatwo jest takie szkło otrzymać, ale jego parametry kuszą przełomem w technologii materiałowej.
      Tradycyjne, znane nam szkło różni się od większości materiałów tym, że posiada strukturę amorficzną: to znaczy w postaci stałej nie formuje kryształów, lecz jego cząstki są rozmieszczone bezładnie, podobnie jak w cieczy (dlatego nazywa się je czasem, z pewną przesadą, „zestaloną cieczą"). Taka struktura materiału posiada wiele zalet, ale ma też wielką wadę: kruchość.
      Wzmacnianie szkła pozwala tę wadę częściowo zniwelować, ale bardziej obiecujące wydaje się podejście odwrotne: nadanie metalom struktury amorficznej, podobnej do szkła. Jest to bardzo trudne, jako że metale stygnąc formują regularne struktury. Jedynym znanym sposobem na „oszukanie" metalu jest tak szybkie jego schłodzenie, aby nie zdążył takiej regularnej struktury uformować.
      Nad nową generacją takich materiałów pracuje zespół złożony z naukowców trzech amerykańskich placówek: U.S. Department of Energy, Lawrence Berkeley National Laboratory (Berkeley Lab) oraz California Institute of Technology (CalTech).
      Metaliczne szkło jest wyjątkowo wytrzymałe, niestety dziedziczy główną wadę amorficznej struktury: kruchość. W materiałach krystalicznych to właśnie struktura powstrzymuje pęknięcia przed powiększaniem się, w materiałach amorficznych niewielkie pęknięcie rozszerza się i powoduje rozpad całości. Metaliczne szkło stworzone głównie przez Mariosa Demetriou to nanostop wielu metali z domieszką palladu. Materiał ten posiada wyjątkową właściwość zmiany swojej struktury w miejscu pęknięcia lub rysy - początkowo jest amorficzna, lecz w miejscu powstającego uszkodzenia tworzą się mikroskopijne kryształy powstrzymujące pęknięcie przed rozszerzaniem się. Kluczem był taki dobór składu, aby energia wymagana do zmiany struktury amorficznej w krystaliczną była mniejsza niż potrzebna do rozszerzenia się uszkodzenia. Krystaliczne elementy przybierają formę „dendrytów", nie likwidując tym samym struktury amorficznej. Co ciekawe, najnowsza wersja materiału potrafi zmieniać fazę z amorficzną na krystaliczną również w wyniku zginania, zapobiegając pęknięciu również w takich sytuacjach.
      Ponieważ badania trwają, naukowcy spodziewają się osiągnięcia jeszcze bardziej wytrzymałych materiałów. Problemem też nadal jest rozmiar osiąganych elementów - ponieważ ich produkcja wymaga wciąż bardzo szybkiego schładzania, bardzo ogranicza to możliwości. Stop złożony z palladu, krzemu, fosforu i germanu pozwala na stworzenie próbek o średnicy nie przekraczającej milimetra. Dodanie do stopu srebra pozwoliło osiągnąć przełomowy rozmiar sześciu milimetrów, co obrazuje skalę problemu. Domieszkowanie na na celu „zdezorientowanie" stopu, który „nie wiedząc" jaką ma właściwie przyjąć strukturę, łatwiej przyjmuje postać amorficzną.
    • przez KopalniaWiedzy.pl
      Lodówka to urządzenie obecne w każdym domu. Od wielu dekad chłodziarki w zasadzie niewiele się zmieniają, a są jedynie udoskonalane. Niemal każda to chłodziarka sprężarkowa (urządzenia absorpcyjne i adsorpcyjne też zaliczają się do sprężarek). Są jeszcze, wykorzystywane w innych dziedzinach, ogniwa Peltiera i to w zasadzie wszystko. Na odległym horyzoncie pojawia się jednak możliwość wykorzystania rozmagnesowywania adiabatycznego. Co to takiego?
      Rozmagnesowanie adiabatyczne wykorzystuje do chłodzenia tzw. efekt magnetokaloryczny. Choć znany jest on od ponad stulecia, nie znalazł wielu zastosowań, choć przydaje się jako środek pomocniczy, na przykład do osiągnięcia temperatury bliskiej zeru absolutnemu. Problem jest ten sam, co w przypadku praktycznego wykorzystania nadprzewodnictwa - znalezienie odpowiednich materiałów.
      Efekt magnetokaloryczny to zjawisko, w którym specjalny materiał gwałtownie obniża swoją temperaturę podczas przejścia przez zmienne pole magnetyczne. Proces ten nie wymaga części mechanicznych ani stosowania gazów szkodliwych dla środowiska, aparatura wykorzystująca rozmagnesowanie adiabatyczne nie zużywa się, jest wydajniejsza o 40% od tradycyjnych metod i energooszczędna. Zajmuje także mniej miejsca od sprężarek.
      Czemu jeszcze nie znalazła powszechnego zastosowania? Żeby można było skonstruować domową lodówkę, potrzebna jest możliwość dość dużego obniżenia temperatury. Dziś, choć znamy sporo metali i ich stopów, które wykazują efekt magnetokaloryczny, żaden z nich nie jest aż tak wydajny, jak potrzeba.
      Znalezieniem odpowiednich materiałów zajmują się naukowcy z Narodowego Laboratorium Berkeley Lawrence'a (Lawrence Berkeley National Laboratory), między innymi Sujoy Roy, Jeff Kortright i Elizabeth Blackburn. Choć do osiągnięcia celu nadal jest daleko, odnotowali już znaczące sukcesy. Badany przez nich stop niklowo-manganowo-galowy po domieszkowaniu miedzą wykazał bardzo duży efekt magnetokaloryczny. Kłopot w tym, że nie wiadomo, dlaczego taka, czy inna domieszka powoduje taki, czy inny skutek. Zasada działania rozmagnesowania adiabatycznego jest w zasadzie tajemnicą. Sujoy Roy przyłączył się do zespołu Kortrighta i Blackburn właśnie po to, żeby pomóc zgłębić zagadkę. Przy użyciu rentgenowskiej spektroskopii absorpcyjnej i innych zaawansowanych technik badawczych posunięto się do przodu. Badano jak zmieniają się miejscowe właściwości elektryczne i magnetyczne poszczególnych pierwiastków przy zmianach składu stopu. Wiadomo już, że wraz z domieszkowaniem miedzi wiązania pomiędzy nikle i galem stają się mocniejsze, zaś właściwości magnetyczne stopu zmieniają się. Czemu jednak domieszka miedzi stanowi taki dopalacz efektu magnetokalorycznego - nie wiadomo.
      Jak tłumaczy Roy, badania wciąż znajdują się na bardzo wczesnym stadium. Zrozumienie, co zachodzi na poziome atomów i cząstek, jaka ich właściwość wpływa na siłę efektu pozwoli na opracowanie takich stopów, które pozwolą na zastosowania produkcyjne. Wtedy chłodzenie przez rozmagnesowanie adiabatyczne trafi nie tylko do kuchennych lodówek i zamrażarek, ale też do klimatyzatorów, komputerów i przemysłu. Nie stanie się to na pewno w ciągu najbliższych kilku lat, ale naukowcy są przekonani, że wreszcie to nastąpi.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...