Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Jak nam się życie skomplikowało
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Amerykańscy lekarze informują o zidentyfikowaniu 17 osób, które odziedziczyły mitochondrialne DNA po obojgu rodzicach. U ssaków dziedziczenie mitochondrialnego DNA odbywa się niemal wyłącznie po matce. Wydaje się, że odnalezione osoby stanowią bardzo rzadki wyjątek od reguły. Prawdopodobnie dlatego, że w ich rodzinach występują mutacje, które zaburzają mechanizm uniemożliwiający przekazywanie mitochondrialnego DNA z ojców na dzieci.
Mitochondria to centra energetyczne komórek. Znajdują się w każdej komórce naszego ciała, w tym w jaju i plemnikach. Jednak gdy plemnik wnika do jaja, jego mitochondria są znakowane i niszczone. Dlatego też mitochondrialne DNA dziedziczymy wyłącznie po matce.
W 2002 roku doniesiono o zidentyfikowaniu mężczyzny, który odziedziczył mitochondrialne DNA po obojgu rodziców. Jednak, jako że dotychczas nie znaleziono drugiego takiego przypadku, pojawiły się poważne wątpliwości, co do rzetelności tamtych badań. Teraz naukowcy z Cincinnati Children's Hospital Medical Center poinformowali o zdobyciu jednoznacznych dowodów, że 17 osób odziedziczyło mitochondrialne DNA po obojgu rodziców.
Pierwszą zidentyfikowaną w Cincinnati osobą był pacjent, który zgłosił się z powodu chronicznego zmęczenia i bólu mięśni. Lekarze podejrzewali, że zostało to spowodowane przez mutację w mitochondriach, wykonali więc odpowiednie badania i odkryli, że pacjent odziedziczył mitochondrialne DNA po obojgu rodziców. Dalsze badania wykazały, że również inni członkowie rodziny mają mieszankę mitochondrialnego DNA po obojgu rodzicach. Następnie lekarze sprawdzili DNA niektórych innych pacjentów z podobnymi bólami mięśni i zmęczeniem. Znaleźli kolejne dwie rodziny z taką mutacją.
Prawdziwą niespodzianką jest fakt, że nie znaleziono więcej takich przypadków", mówi Nick Lane z University College London. To autor książki na temat mitochondriów. W ubiegłym roku jego zespół przewidywał, że przedostanie się DNA ojca do mitochondriów dziecka powinno być dość częstym zjawiskiem. Zdaniem Lane'a takie zjawisko może zachodzić, gdyż w grę wchodzą tutaj dwie przeciwne sobie mechanizmy ewolucyjne. W krótkim terminie odziedziczenie mitochondriów również po ojcu może na przykład kompensować szkodliwe mutacje w mitochondriach matki. Jednak w długim terminie mogłoby to uniemożliwić ewolucyjne usuwanie takich mutacji, gdyż byłyby one przykryte przez prawidłowe mitochondria ojca. Lane uważa, że właśnie dlatego ewolucja wypracowała niezwykle dużą liczbę mechanizmów, które miały zapewniać, że mitochondria dziedziczy się tylko po matce. Uważa on, że w toku ewolucji mechanizmy takie wielokrotnie się pojawiały, znikały i ponownie pojawiały.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Kakao poprawia funkcjonowanie mięśni szkieletowych. Dzieje się tak dzięki regeneracji ich centrów energetycznych - mitochondriów.
Niewielkie studium przeprowadzone przez naukowców ze Szkoły Medycyny Uniwersytetu Kalifornijskiego w San Diego i VA San Diego Healthcare System (VASDHS) wykazało, że po 3 miesiącach terapii kakao wzbogaconym epikatechiną u pacjentów z zaawansowaną niewydolnością serca i cukrzycą typu 2. poprawiła się struktura mitochondriów. Zachęceni wynikami Amerykanie rozpoczęli testy kliniczne na szerszą skalę, w których uwzględniono grupę kontrolną. Ich celem jest ustalenie, czy pod wpływem terapii kakao z dodatkiem epikatechiny wzrośnie wydolność wysiłkowa osób z wymienionymi wyżej dolegliwościami.
Początkowo Amerykanie skupili się na przypadkach 5 pacjentów z poważnymi uszkodzeniami mitochondriów mięśni szkieletowych. Do dysfunkcji tych organelli dochodzi zarówno pod wpływem cukrzycy typu 2., jak i niewydolności serca. Anomalie dotyczące mięśni szkieletowych oraz mięśnia sercowego wiążą się z obniżoną wydolnością funkcjonalną, objawiającą się zadyszką czy brakiem energii.
Ochotnicy jedli gorzką czekoladę i pili napoje czekoladowe, dzięki czemu przez 3 miesiące dziennie dostarczali swojemu organizmowi ok. 100 mg epitakechiny. Przed i po eksperymencie wykonywano biopsje mięśni szkieletowych. Oceniano zarówno objętość mitochondriów, jak i liczbę grzebieni (łac. cristae). U chorych dostrzegliśmy poważne uszkodzenia i zmniejszenie liczebności grzebieni. Po 3 miesiącach zaszła regeneracja - liczba cristae powróciła do normy. Nastąpił też wzrost kilku molekularnych markerów, zaangażowanych w powstawanie nowych mitochondriów - opowiada dr Francisco J. Villarreal.
-
przez KopalniaWiedzy.pl
Wydajność mięśni zależy m.in. od zdolności wykorzystania węglowodanów jako źródła energii. Ćwiczenia wpływają na nią korzystnie, a otyłość czy przewlekłe choroby wręcz przeciwnie. Naukowcy z Sanford-Burnham Medical Research Institute odkryli mechanizm, dzięki któremu można u myszy przeprogramować geny metaboliczne mięśni, wpływając na ich umiejętność zużywania cukrów. Niewykluczone, że w ten sposób będzie się w przyszłości zapobiegać bądź leczyć cukrzycę, zespół metaboliczny i otyłość.
Zasadniczo te transgeniczne myszy są w stanie magazynować węglowodany i spalać je w stopniu występującym tylko u wytrenowanych sportowców - wyjaśnia dr Daniel P. Kelly.
Mięśnie wyhodowanych przez Amerykanów myszy wytwarzają białko PPARβ/δ. Jest ono receptorem jądrowym, a więc czynnikiem transkrypcyjnym, który przez przyłączanie ligandów reguluje ekspresję genów metabolicznych mięśni w odpowiedzi na bodźce zewnętrzne.
Wcześniejsze badania pokazały, że gryzonie z wyższym poziomem PPARβ/δ w mięśniach cechuje większa wydolność wysiłkowa. Jak napisali w artykule opublikowanym na łamach Genes & Development członkowie zespołu Kelly'ego, mięśnie zwierząt z grupy PPARβ/δ przewyższają mięśnie zwykłych zwierząt pod względem zdolności wychwytywania cukru z krwiobiegu, a także magazynowania go i wykorzystywania w formie energii. Myszy PPARβ/δ są supersprawne. W porównaniu do przeciętnych gryzoni, biegną dłużej i szybciej, a w ich mięśniach powstaje mniej kwasu mlekowego.
Główną rolę w mechanizmie odkrytym przez ekipę z Sanford-Burnham Medical Research Institute odgrywają kompleksy tworzone przez 3 białka: 1) PPARβ/δ, 2) AMPK (kinazę aktywowaną 5'AMP) oraz 3) czynnik transkrypcyjny MEF2A, który pomaga w aktywowaniu miocytospecyficznych genów. Wspólnie białka włączają ekspresję genu kodującego dehydrogenazę mleczanową - enzym kierujący cukropochodne metabolity do mitochondriów, gdzie możliwe jest całkowite spalanie "surowca".
-
przez KopalniaWiedzy.pl
Podczas zapłodnienia do komórki jajowej wnika prawie cały plemnik (główka i szyjka), jednak, jak się okazuje, większość jego organelli komórkowych, w tym mitochondria, nie jest przekazywanych potomstwu. Powód? Wkrótce po zapłodnieniu oocyt eliminuje je na drodze autofagii.
Amerykańsko-francuski zespół jako pierwszy zademonstrował, że w ciągu kilku minut od zapłodnienia komponenty plemnika zostają zamknięte w pęcherzykach, a następnie rozłożone przez enzymy. Za pomocą PCR (reakcji łańcuchowej polimerazy) wykazano, że cały materiał genetyczny z mitochondriów ojca ulega szybkiej degradacji.
W artykule opublikowanym na łamach Science specjaliści wyrażają nadzieję, że zrozumienie ewolucyjnych źródeł eliminowania ojcowskich mitochondriów przyczyni się także np. do ulepszenia metod klonowania czy zapłodnienia in vitro.
Wyłącznie matczyne mitochondria pozostają u większości organizmów, w tym u ssaków. Dotąd nie było jednak wiadomo, kiedy i w jaki sposób dochodzi do wyeliminowania mitochondriów od ojca. Odpowiedź na te pytania znaleziono podczas badań na nicieniu Caenorhabditis elegans.
Podczas eksperymentów akademicy zablokowali system komórkowy odpowiedzialny za spermofagię. Okazało się, że ojcowskie mitochondria pozostały wtedy w embrionie. Później Francuzi i Amerykanie sprawdzali, czy podobne zjawiska zachodzą w nowo zapłodnionych oocytach myszy. Zauważyli, że białka autofagocytarne gromadzą się wokół środkowej części plemnika, gdzie znajdują się mitochondria.
Naukowcy proponują pewne wyjaśnienie efektu, który najwyraźniej występuje u wielu gatunków zwierząt. Wg nich, mitochondria plemników są eliminowane przez komórki jajowe, bo ze względu na nasilony metabolizm męskich gamet DNA w mitochondriach plemników może przechodzić częste mutacje. Lepiej ich więc nie przekazywać potomstwu.
-
przez KopalniaWiedzy.pl
Od kilkudziesięciu lat uważa się, że nieorganiczne azotany są szkodliwe dla zdrowia. Tymczasem zespół ze szwedzkiego Karolinska Institutet dowodzi, że azotany poprawiają funkcjonowanie mitochondriów komórkowych.
Podczas swoich najnowszych eksperymentów profesor Eddie Weitzberg i jego zespół podawali przez trzy dni zdrowym ochotnikom taką ilość azotanów, jaką znajdziemy w 200-300 gramach szpinaku czy sałaty. Po tym czasie badani wsiadali na stacjonarny rower i byli poddawani próbom. Uczeni analizowali próbki ich mięśni i porównywali z wynikami osób, którym podawano placebo. Okazało się, że u osób spożywających azotany, mitochondria pracowały bardziej wydajnie, zużywały podczas wysiłku mniej tlenu, a jednocześnie produkowały więcej bogatego w energię ATP (adenozynotrifosforan) na każdą zużytą molekułę.
Mitochondria odgrywają kluczową rolę w metabolizmie komórkowym. Poprawa ich pracy prawdopodobnie niesie ze sobą wiele korzyści dla ciała i wyjaśnia pozytywne skutki działania warzyw - mówi profesor Weitzberg.
Wraz ze współautorem badań, profesorem Jonem Lundbergiem, opublikowali ich wyniki w piśmie Cell Metabolism. Są one szczególnie interesujące dla osób uprawiających sporty wytrzymałościowe.
Pamiętać jednak należy, że azotany prawdopodobnie przyczyniają się również do dysfunkcji mitochondriów, cukrzycy i chorób sercowo-naczyniowych.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.