Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Znaleziono rejon mózgu odpowiedzialny za starzenie
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Grelina jest to endogenny peptyd mózgowo – jelitowy, wydzielany w dużych ilościach w żołądku u ludzi i gryzoni. Może pełnić biologiczną funkcję aktywacji receptora wydzielania hormonu wzrostu (GHSR). Została odkryta w 1999r. Od tego czasu przeprowadzono bardzo dużo badań dotyczących wpływu greliny na ludzki apetyt i odczuwaną przyjemność z jedzenia. Badania nad tym hormonem pokazały, że jest on wydzielany w wielu tkankach, a także bierze udział w regulacji neurohumoralnej, takiej jak homeostaza metaboliczna, stany zapalne, czy regulacja układu sercowo – naczyniowego1.
Grelina jest wydzielana przez żołądek w momencie, gdy jest on pusty lub prawie pusty, a jej poziomy są zazwyczaj najwyższe tuż przed posiłkami. Następnie, gdy spożywamy pokarm poziom greliny spada. Niektóre stany mogą prowadzić do chronicznie niskiego lub wysokiego poziomu greliny.
Niski poziom hormonu głodu występuję zazwyczaj u osób z otyłością. Niektórzy naukowcy uważają, że ma to związek z tym, że osoby otyłe są naturalnie bardziej wrażliwe na grelinę, wobec tego mogą czuć się znacznie bardziej głodne przy niższych stężeniach tego hormonu. Niższe stężenie greliny występuje również w niektórych chorobach żołądkowo – jelitowych takich jak: przewlekłe zapalenie żołądka, zakażenie H. pylori, czy Zespół jelita drażliwego.
Wysoki poziom greliny utrzymuje się u osób ograniczających spożycie kalorii, np. podczas restrykcyjnej diety lub jest wynikiem chorób o podłożu genetycznym bądź psychicznym, takich jak: jadłowstręt psychiczny, nietolerancja glutenu, nieswoiste zapalenie jelit, Zespół Pradera – Williego.
Na stężenie greliny w organizmie znacząco wpływają operacje chirurgiczne żołądka wykonywane podczas leczenia ciężkiej otyłości (rękawowa resekcja żołądka, bajpas żołądka). U ludzi po tych zabiegach obserwowano znacznie niższe poziomy hormonu głodu. Uważa się, że zmniejszony rozmiar żołądka jest jedną z przyczyn utraty wagi po operacji bariatrycznej i jest odpowiedzialny za niższy poziom greliny3.
Leptyna
Warto również wspomnieć o innym istotnym hormonie leptynie, który podobnie jak grelina ma wpływ na kontrolę apetytu i uczucie sytości, a co za tym idzie regulację masy ciała. Leptyna zmniejsza apetyt, natomiast grelina go zwiększa. Produkowana prze komórki tłuszczowe leptyna informuje mózg o wystarczającej ilości energii i uczuciu sytości. Przekazuje również informacje do mózgu, że organizm może zacząć spalać tłuszcz w celu uzyskania energii. Ludzie, którzy mają więcej tkanki tłuszczowej, mają zazwyczaj wyższy poziom leptyny krążącej w ich ciałach. W wyniku tej stałej wysokiej ekspozycji na leptynę mogą się na nią uodpornić, a także na jej działanie hamujące apetyt. Może to spowodować wysyłanie mylnych informacji do mózgu o potrzebie jedzenia. Kiedy organizm dostaje więcej jedzenia niż potrzebuje poziom leptyny zwiększa się, a ciało staje się na nią jeszcze bardziej odporne co sprzyja powstawaniu otyłości. Grelina odgrywa rolę w krótkoterminowej kontroli apetytu, natomiast leptyna kontroluje długoterminową kontrolę masy ciała4.
Wpływ greliny na apetyt i przyrost masy ciała
Przyjmowanie pokarmu jest ważnym aspektem homeostazy energetycznej i homeostazy glukozy. Główną rolą greliny jest stymulacja apetytu, a tym samym pobór energii. Hormon głodu wydzielany jest w stanach ujemnego bilansu energetycznego podczas głodu i tłumiony w stanach dodatniego bilansu energetycznego po posiłku, co sugeruje, że grelina pełni kompensacyjną rolę w braku równowagi energetycznej. Dowody farmakologiczne potwierdzają rolę greliny w pobudzaniu apetytu. Ciągłe podawanie (za pomocą iniekcji) greliny do kory mózgowej gryzoni, silnie zwiększa u nich poczucie głodu, a co za tym idzie pobieranie pokarmu i przyrost masy ciała. Odwrotny skutek osiągnięto podając gryzoniom immunoglobuliny anty- grelina, które hamowały u nich pobieranie pokarmu. Wykazano również, że poziom greliny ściśle odpowiada harmonogramom karmienia. Jej stężenie w osoczu ludzkim wzrasta dwukrotnie przed posiłkiem i krótko po nim spada. Może to być związane z rolą hormonu głodu w inicjacji karmienia. Jednak ustalone pory posiłków oznaczały, że badani ludzie byli świadomi nadchodzącego posiłku, dlatego na jego rozpoczęcie mogła mieć wpływ przewidywana reakcja na pokarm, a nie poziom krążącej greliny2.
Uważa się, że grelina zwiększa glikemię i apetyt, powodując otyłość, a hamowanie aktywności greliny lub jej receptora łagodzi otyłość, obniża glikemię i sprzyja metabolizmowi tłuszczów. Wydzielanie hormonu głodu jest wrażliwe na stężenie glukozy we krwi w warunkach hipoglikemii, a długotrwałe głodzenie prowadzi do wzrostu jej poziomu w surowicy. Po około godzinie od posiłku poziom krążącej greliny stopniowo spada. Ponadto zablokowanie interakcji między greliną i/lub receptorami greliny nasila objawy hipoglikemii, co sugeruje, że hormon głodu może być dobrym lekiem skojarzonym u pacjentów, którzy nie reagują dobrze na antagonistów receptora glukagonu. Gdy do leczenia cukrzycy typu 1 stosuje się antagonistów receptora glukagonu, stężenie greliny w osoczu wzrasta, aby przeciwdziałać hipoglikemii wywołanej lekami. Zatem hormon głodu ma duże znaczenie terapeutyczne w łagodzeniu skutków ubocznych leków przeciwcukrzycowych, gdyż może odwracać hipoglikemię wywołaną lekami przeciwcukrzycowymi1.
Inne funkcje greliny
Choć w największym stopniu grelina wydzielana jest w żołądku, jej uwalnianie następuje również w innych częściach ciałach tj. mózg, jelito cienkie i trzustka. Hormon głodu poza swoją główną funkcją, którą jest informowanie mózgu o poczuciu głodu ma wiele innych zastosowań, np.:
- zwiększa spożycie pokarmu i pomaga organizmowi magazynować tłuszcz,
- pomaga w pobudzeniu przysadki mózgowej do uwalniania hormonu wzrostu,
- odgrywa rolę w kontrolowaniu poziomu cukru i uwalnianiu przez organizm insuliny,
- odgrywa rolę w ochronie mięśni przed osłabieniem, w tworzeniu kości oraz w metabolizmie.
Jak utrzymać odpowiedni poziom greliny w organizmie?
Aby utrzymać równowagę hormonalną w organizmie należy praktykować dobre nawyki związane ze stylem życia, takie jak: unikanie modnych diet lub jo-jo diet, podczas których dochodzi do częstych zmian masy ciała. Należy stosować zbilansowaną dietę bogatą w zdrowe węglowodany, czyli produkty pełnoziarniste i chude białka zawarte w kurczaku czy rybach. Potrzeba również ograniczyć przetworzoną żywność, zwłaszcza zawierającą duże ilości cukru, syrop kukurydziany o wysokiej zawartości fruktozy i sól. Zaleca się również zadbać o dobry sen trwający siedem do ośmiu godzin na dobę, odpowiednie nawodnienie organizmu (1,5 l wody na dobę, spożywanie pokarmów wypełnionych wodą takich jak owoce i warzywa), oraz kontrolę reakcji na stres, ponieważ stres może zwiększać poziom greliny.
Poziom hormonu głodu ma tendencję do wzrostu i spadku wraz z ilością spożywanego jedzenia. Jego stężenie może się zmniejszać, gdy organizm jest nawodniony oraz wzrastać podczas odwodnienia. Rodzaje spożywanych pokarmów znacząco wpływają na poziom greliny. Spożywając potrawy bogate w białko lub zdrowe węglowodany poziom hormonu głodu obniża się bardziej niż podczas spożywania posiłków wysokotłuszczowych3.
1. “Molecular Mechanisms and Health Benefits of Ghrelin: A Narrative Review” – Zheng- Tong J., Qi L. Nutrients 2022, 14(19), 4191
2. “The Physiological Role of Ghrelin in the Regulation of Energy and Glucose Homeostasis” - Sovetkina A., Nadir R., Fung J.N.M., Nadjarpour A. i in. Cureus 2020 May; 12(5): e7941
3. “Ghrelin” Last reviewed by a Cleveland Clinic medical professional on 04/21/2022. https://my.clevelandclinic.org/health/body/22804-ghrelin
4. “How Your Hunger Hormones Control Weight Loss” - Rodgiguez J., Sands. M. News and Research https://www.endocrineweb.com/news/63844-how-hunger-hormones-control-weight-loss
« powrót do artykułu -
przez KopalniaWiedzy.pl
Specjaliści od dawna poszukują bezpośredniego związku pomiędzy aktywnością neuronów w mózgu, a aktywnością bakterii w układzie pokarmowym. Francuscy uczeni z Instytutu Pasteura poinformowali właśnie na łamach Science, że w modelu zwierzęcym neurony w podwzgórzu bezpośrednio wykrywają zmiany aktywności bakterii w jelitach i odpowiednio dostosowują do tego apetyt i temperaturę ciała myszy. To dowodzi, że istnieje bezpośrednia komunikacja pomiędzy mikrobiomem jelit a mózgiem. Być może uda się to wykorzystać do opracowania metod walki z cukrzycą czy otyłością.
Związki uwalniane przez mikrobiom trafiają do krwi i mogą wpływać na różne procesy fizjologiczne gospodarza, takie jak działanie układu odpornościowego, metabolizm czy funkcje mózgu. Metabolity mikroorganizmów, w tym krótkołańcuchowe kwasy tłuszczowe i pochodne tryptofanu, regulują bardzo wiele procesów. Składowe strukturalne mikroorganizmów są jednak wykrywane przez receptory wykrywające wzorce (PRR), które sygnalizują obecność wirusów, bakterii i grzybów na błonach śluzowych, w tkankach i komórkach. Wiemy, że składniki bakteryjne wpływają na działanie mózgu, a PRR są powiązane z zaburzeniami jego pracy. Jednak nie wiemy, czy neurony w mózgu mogą bezpośrednio wykrywać komponenty bakteryjne i czy bakterie mogą regulować procesy fizjologiczne poprzez regulowanie neuronów w mózgu, stwierdzają autorzy badań.
Naukowcy skupili się na receptorze NOD2 obecnym w komórkach odpornościowych. Należy on do grupy rozpoznających wzorce receptorów wewnątrzkomórkowych. Receptor ten wykrywa muropeptydy wchodzące w skład ścian komórkowych bakterii. Wiadomo, że u myszy, w neuronach których nie dochodzi do ekspresji Nod2, pojawiają się zmiany odnośnie spożywania pokarmu, zakładania gniazda i temperatury ciała. Naukowcy wykorzystali więc techniki obrazowania, by zidentyfikować te obszary mózgu, które reagują na doustne podawanie muropeptydów. Sprawdzali też, jak zmieniała się aktywność neuronów po podaniu myszom muropeptydów. Stworzyli też genetycznie zmodyfikowane myszy, w których podwzgórzach nie dochodziło do ekspresji Nod2. To właśnie podwzgórze reguluje temperaturę ciała i przyjmowanie pokarmów.
Na podstawie tak prowadzonych eksperymentów stwierdzili, że do ekspresji receptora NOD2 dochodzi w różnych regionach mózgu myszy, w szczególności zaś w podwzgórzu. A w kontakcie z muropeptydami ekspresja ta jest tłumiona.
Muropeptydy obecne w jelitach, krwi i mózgu to dowody na proliferację bakterii. To niezwykłe odkrycie pokazuje, że fragmenty bakterii bezpośrednio wpływają na tak ważny ośrodek w mózgu, jakim jest podwzgórze, o którym wiemy, że reguluje kluczowe funkcje organizmu, jak temperatura, reprodukcja, głód i pragnienie, stwierdzają naukowcy.
Uczeni mają nadzieję, że dzięki zdobytej wiedzy i przyszłym interdyscyplinarnym badaniom – w które powinni zostać zaangażowani neurolodzy, immunolodzy i mikrobiolodzy – powstaną w przyszłości nowe leki skuteczniej zwalczające takie zaburzenia metaboliczne jak otyłość i cukrzyca.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ostatnie badania pokazały, że istnieją 4 podstawowe typy starzenia: metaboliczny, immunologiczny, hepatologiczny (wątrobowy) i nefrytyczny (nerkowy).
Wiemy, że istnieje trochę markerów klinicznych, np. wysoki cholesterol, które są powszechniejsze w starszej populacji. Chcieliśmy jednak wiedzieć o starzeniu więcej, niż można wyciągnąć z populacyjnych średnich. Co dzieje się z daną osobą podczas starzenia? Nikt nie przyglądał się szczegółowo tej samej osobie w dłuższym czasie - mówi dr Michael Snyder ze Szkoły Medycznej Uniwersytetu Stanforda.
W ramach najnowszego studium Amerykanie profilowali grupę 43 zdrowych kobiet i mężczyzn w wieku 34-68 lat. Przynajmniej 5-krotnie na przestrzeni 2 lat wykonywano u nich pomiary różnych wskaźników z zakresu biologii molekularnej.
To właśnie wtedy akademicy stwierdzili, że generalnie ludzie starzeją się wg 4 typów. Starzejący się metabolicznie są, na przykład, bardziej zagrożeni cukrzycą albo wykazują objawy podwyższonego poziomu hemoglobiny glikowanej HbA1C (która powstaje wskutek nieenzymatycznego przyłączenia glukozy do cząsteczki hemoglobiny). Ludzi z typu immunologicznego cechuje z kolei wyższy poziom markerów immunologicznych lub z wiekiem stają się oni bardziej podatni na choroby powiązane z układem odpornościowym. Amerykanie podkreślają, że mogą się też zdarzać typy mieszane.
Analizując próbki krwi, kału itp., w ciągu 2 lat śledzono poziomy różnych mikroorganizmów i związków, np. białek, metabolitów czy lipidów. Oceniano, jak zmieniały się one z czasem.
Nasze badanie pozwoliło uchwycić znacznie bardziej złożony obraz starzenia [...]. Byliśmy w stanie stwierdzić, jak konkretni ludzie doświadczają starzenia na poziomie molekularnym. Różnice są dość spore.
Różnice dotyczą nie tylko przebiegu, ale i tempa starzenia. Snyder dodaje, że czas trwania badań pozwalał na podjęcie ewentualnych działań, tak by zapobiec danym markerom starzenia za pomocą zmiany zachowania.
Typ starzenia (ang. ageotype) jest nie tylko etykietką; może pomóc konkretnym osobom skupić się na czynnikach ryzyka i znaleźć obszary, w których najprawdopodobniej z biegiem lat pojawią się problemy - dodaje Snyder i wyjaśnia, że by lepiej zrozumieć zachodzące zjawiska, trzeba przeprowadzić kolejne badania na większej liczbie osób i z większą liczbą pomiarów.
To, że ktoś podpada pod jeden z czterech bądź kilka z 4 wyodrębnionych typów, nie oznacza, że nie starzeje się on także wzdłuż innych szlaków biologicznych. Typ wskazuje na szlaki, w przypadku których markery starzenia są najsilniej zaznaczone.
Autorzy artykułu z pisma Nature Medicine porównywali także starzenie osób zdrowych i wykazujących insulinooporność. Dotąd nikt tego nie badał. Ogółem stwierdziliśmy znaczące różnice dotyczące ok. 10 cząsteczek. Wiele z nich miało związek z działaniem układu odpornościowego i stanem zapalnym.
Co ważne, nie u wszystkich z czasem obserwowano wzrost markerów ageotypu. U niektórych występowały spadki markerów, przynajmniej przez krótki okres, gdy zmieniali swoje zachowanie. Ochotnicy nadal się starzeli, ale ogólne tempo, w jakim się to działo, zmniejszało się i w niektórych przypadkach markery starzenia spadały. Naukowcy zauważyli ten fenomen w niewielkiej grupie pacjentów w przypadku garstki ważnych z klinicznego widzenia cząsteczek, np. hemoglobiny glikowanej i kreatyniny.
W podgrupie tej znaleźli się ludzie, którzy by spowolnić tempo starzenia, wprowadzili zmiany w trybie życia. Wśród tych, u których stwierdzono spadki HbA1C, sporo osób schudło, a jedna zmieniła dietę. Pewni ochotnicy ze spadkami kreatyniny, która wskazuje na funkcję nerek, zażywali statyny. W pozostałych przypadkach nie wiadomo, czemu doszło do spadków markerów. U części badanych nie było oczywistych zmian zachowań, a ekipa nadal dostrzegała spowolnione tempo starzenia w obrębie ich ageotypu. Niektórzy utrzymali wolniejsze od średniej tempo starzenia przez cały okres badania. Jak lub czemu się to udało, nadal pozostaje tajemnicą.
Snyder nie unika udziału we własnych badaniach. Ostatnio było podobnie. Naukowiec było nieco zawiedziony, że starzeje się w przeciętnym tempie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Związanym z wiekiem spadkom dopływu krwi do mózgu i pogorszeniu pamięci można zapobiegać za pomocą sirolimusa (rapamycyny), leku immunosupresyjnego stosowanego w transplantologii.
Zespół z Centrum Nauk o Zdrowiu Uniwersytetu Teksańskiego w San Antonio zaczął aplikować szczurom sirolimus, gdy miały 19 miesięcy. Niewielką dawkę leku dodawano do jedzenia do momentu, aż gryzonie skończyły 34 miesiące i były w naprawdę podeszłym wieku.
[...] Osobniki te osiągnęły sędziwy wiek, ale ich krążenie w mózgu było dokładnie takie samo, jak wtedy, gdy zaczynały terapię - opowiada prof. Veronica Galvan.
Niepoddawane terapii szczury przechodziły zmiany obserwowane u starszych dorosłych: widoczne były spadki dopływu krwi do mózgu i pogorszenie pamięci. [...] Stare szczury leczone rapamycyną przypominały zaś szczury w średnim wieku z naszego studium - dodaje dr Candice Van Skike.
Starzenie to najsilniejszy czynnik ryzyka demencji, ekscytująco jest więc stwierdzić, że rapamycyna, substancja znana z wydłużania życia, może też pomóc w zachowaniu integralności krążenia mózgowego i osiągów pamięciowych starszych dorosłych. Obecnie badamy bezpieczeństwo leku u osób z łagodnymi zaburzeniami poznawczymi (MCI) - wyjaśnia prof. Sudha Seshadri.
Trzeba podkreślić, że przyglądano się zwykłemu starzeniu. Szczury doświadczały naturalnego spadku możliwości poznawczych, który nie był wymuszony żadnym procesem chorobowym - zaznacza Van Skike.
Sirolimus należy do inhibitorów mTOR. Szlak mTOR odgrywa istotną rolę w kontroli cyklu komórkowego. Jego aktywacja bierze udział w patogenezie niektórych chorób, a także jak sądzą Amerykanie, napędza utratę synaps i przepływu krwi do mózgu w czasie starzenia. Z tego powodu długotrwałe podawanie rapamycyny szczurom skutkowało ograniczeniem deficytów uczenia i pamięci, zapobiegało zanikowi sprzężenia naczyniowo-nerwowego, a także korzystnie wpływało na perfuzję mózgową.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dzięki współpracy instytucji z Rosji i USA udało się zidentyfikować genetyczne biomarkery długowieczności. Wyniki badań ukazały się w piśmie Cell Metabolism.
Do zabiegów, o których wiadomo, że wydłużają życie, należą interwencje chemiczne, np. podanie sirolimusa (rapamycyny), czy diety (ograniczenie liczby spożywanych kalorii).
Odkryto część celów tych interwencji, nadal jednak nie poznano szczegółów związanych z układowymi mechanizmami molekularnymi prowadzącymi do wydłużenia życia.
Naukowcy z Skolkovo Institute of Science and Technology (Skoltech) oraz Uniwersytetu Harvarda postanowili uzupełnić tę lukę w wiedzy i zidentyfikować kluczowe procesy molekularne związane z długowiecznością. W tym celu analizowano wpływ różnych interwencji na aktywność genów myszy.
W laboratorium poddaliśmy 8 interwencjom samce i samice myszy w różnym wieku. Analizowaliśmy zmiany ekspresji genów wywołane przez te zabiegi [przeprowadzono sekwencjonowanie RNA]. Po zebraniu naszych wyników i danych opublikowanych przez innych naukowców uzyskaliśmy profile aktywności genów przy 17 typach interwencji. Pojawiały się, oczywiście, efekty specyficzne dla interwencji, ale stwierdzono także, że istnieje grupa genów, która zmienia swą aktywność w podobny sposób w odpowiedzi na różne wydłużające życie zabiegi - opowiada Alexander Tyshkovskiy.
Zidentyfikowano m.in. wątrobowe sygnatury genowe związane z wydłużeniem życia. Należą do nich nasilenie fosforylacji oksydacyjnej i metabolizmu leków.
W następnym etapie naukowcy wykorzystali nowo odkryty zestaw biomarkerów do poszukiwania interwencji o zbliżonym wpływie na ich aktywność (a zatem o dużym potencjale wydłużenia życia). Dzięki temu udało się wytypować kilka takich zabiegów, w tym chroniczne niedotlenienie (hipoksję) czy związki chemiczne, np. palmitynian askorbylu oraz inhibitor mTOR - KU-0063794.
Obecnie potwierdzamy te wskazania, badając ich wpływ na długość życia myszy. Mamy nadzieję, że zidentyfikowane biomarkery znacząco ułatwią poszukiwania nowych wydłużających życie interwencji i pomogą poprawić stan zdrowia i długowieczność gryzoni, a w dłuższej perspektywie ludzi.
Akademicy opracowali aplikację GENtervention, która zapewnia szybkie i przyjazne użytkownikowi narzędzia do badania związków między aktywnością poszczególnych genów a długowiecznością.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.