Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Kosmiczny żagiel zdał egzamin

Rekomendowane odpowiedzi

Japońska Agencja Kosmiczna (JAXA) informuje, że żagiel napędzający pojazd kosmiczny IKAROS sprawuje się wyjątkowo dobrze. IKAROS został wystrzelony 21 maja. Wyposażono go w żagiel, który wykorzystuje ciśnienie wytwarzane przez uderzające weń fotony. IKAROS ciągle przyspiesza.

Japońscy naukowcy wyliczyli, że napęd pracuje tak, jak zakładano. Uderzenie pojedynczego fotonu oznacza przyłożenie siły rzędu 1,12 mN. To odpowiednik 0,114 grama na Ziemi.

Koncepcja kosmicznego żagla okazuje się zatem sukcesem. Niewykluczone zatem, że przez najbliższe lata, do czasu opracowania lepszej technologii, żagle będą coraz częściej wykorzystywane przy wysyłaniu pojazdów głęboko w przestrzeń kosmiczną.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Uderzenie pojedynczego fotonu oznacza przyłożenie siły rzędu 1,12 mN. To odpowiednik 0,114 grama na Ziemi.

A jak długo to przyłożenie trwa? Druga rzecz, to gdyby zestawić tę informację z gęstością promieniowania Słońca, to to na orbicie Ziemi metr kwadratowy żagla dostawałby gdzieś tak z 10^13 ton "fotonowych" uderzeń w ciągu sekundy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

predkosc wzrasta w nieskonczonosc, piekna sprawa, gorzej jak w "cos" walnie =)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  Uderzenie pojedynczego fotonu oznacza przyłożenie siły rzędu 1,12 mN. To odpowiednik 0,114 grama na Ziemi. 

To jakaś bzdura, który foton na ziemi tyle waży?? Chyba powinno być na cm2 i nie pojedynczego fotonu .

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Myślę, że chodziło o to, ziemska grawitacja przy powierzchni ziemi działa z taką samą siłą na obiekt o masie 0.114 g. Bo pisanie, że 1.12 mN to odpowiednik 0.114 g to zbyt duży skrót myślowy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Myślę, że chodziło o to, ziemska grawitacja przy powierzchni ziemi działa z taką samą siłą na obiekt o masie 0.114 g. Bo pisanie, że 1.12 mN to odpowiednik 0.114 g to zbyt duży skrót myślowy. 

Przecież foton ma prędkość C i określoną masę przy tej prędkości której daleko do podanej wielkości (inaczej dowolne źródło prom gama lewitowałoby na orbitę i dalej , do tego zatrzymanie jakimś żagielkiem jest niemożliwe) dalej twierdzę że to bzdura albo pomyłka.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Kiedyś czytałem o cząstce OMG, która miała absurdalnie wysoką energię, i gdy weszła w atmosferę, to przy powierzchni ziemi kaskada cząstek wtórnych mierzyła jakieś 50 km średnicy. Ale to była porządna cząstka, a nie jakiś zgęstek fal prawie bez masy.

 

http://en.wikipedia.org/wiki/Oh-My-God_particle

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

chodzi o caly zagiel a nie o 1 foton

 

faktycznie na stronie jaxa wystepuje na wykresie zapis

Solar Photon Thrust = 1.3mN

no ale po mojemu to nie "1 photon thrust" ale sila ciagu calego zagla

 

to tak jakby przetlumaczyc

"shower drop thrust" jako sile 1 kropli no bez zartow

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Trochę duża ta siła jak na jeden foton(nik). Chyba rzeczywiście coś nie tak.  :-\

Na wszelki wypadek nie będę już wychodzić na słońce 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z University of Birmingham opublikowali na łamach Physical Review Letters artykuł, w którym niezwykle szczegółowo opisali naturę fotonów, ich interakcję z materią oraz sposób, w jaki są emitowane przez atomy i molekuły oraz kształtowane przez środowisko. W ten sposób mogli precyzyjnie opisać kształt pojedynczego fotonu. Zadanie to przekraczało dotychczas możliwości nauki, gdyż foton może propagować się w środowisku na niezliczoną liczbę sposobów, przez co trudno jest modelować interakcje, w jakie wchodzi.
      Nasze obliczenia pozwoliły nam na przełożenie pozornie nierozwiązywalnego problemu w coś, co można obliczyć. A produktem ubocznym naszego modelu jest możliwość stworzenia obrazu pojedynczego fotonu, czego dotychczas nikt nie dokonał, mówi doktor Benjamin Yuen z Wydziału Fizyki i Astronomii University of Birmingham.
      Współautorka badań, profesor Angela Demetriadou stwierdziła: geometria i właściwości optyczne środowiska mają olbrzymi wpływ na sposób emitowania fotonów, definiują ich kształt, barwę, a nawet to, z jakim prawdopodobieństwem istnieją.
      Praca brytyjskich uczonych pogłębia naszą wiedzę na temat wymiany energii pomiędzy światłem a materią, pozwala lepiej zrozumieć, w jaki sposób światło wpływa na bliższe i dalsze otoczenie. Pozwolą lepiej manipulować interakcjami światła z materią, a więc przyczynią się do udoskonalenia czujników, ogniw fotowoltaicznych czy komputerów kwantowych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z University of Washington zauważyli, że są w stanie wykryć „atomowy oddech” czyli wibracje mechaniczne pomiędzy dwiema warstwami atomów. Dokonali tego obserwując światło emitowane przez atomy wzbudzone laserem. Odkryte zjawisko można wykorzystać do zakodowania i przesłania informacji kwantowej. Uczeni zbudowali urządzenie, które może stać się elementem składowym przyszłych technologii kwantowych.
      To nowa platforma w skali atomowej, która wykorzystuje optomechanikę, szereg zjawisk w których ruch światła i ruch mechaniczny są ze sobą nierozerwalnie powiązane. Mamy tutaj efekty kwantowe, które możemy wykorzystać do kontrolowania pojedynczego fotonu przemieszczającego się przez zintegrowane obwody optyczne, mówi profesor Mo Li, który stał na czele grupy badawczej.
      Ostatnie badania bazowały na wcześniejszych pracach związanych z ekscytonami. To kwazicząstki w których można zakodować informację kwantową, a następnie przesłać ją w postaci fotonu, którego właściwości kwantowe (jak polaryzacja czy długość fali) pełnią rolę kubitu. A jako że kubit ten jest niesiony przez foton, informacja przemieszcza się z prędkością światła. Fotony są naturalnym wyborem jako nośnik informacji kwantowej, gdyż potrafimy przesyłać je za pomocą światłowodów szybko na duże odległości, nie tracą przy tym zbyt wielu informacji, dodaje doktorantka Adina Ripin.
      Naukowcy pracowali w ekscytonami chcąc stworzyć urządzenie emitujące pojedyncze fotony. Obecnie w tym celu używa się atomowych macierzy, takich jak np. znajdujące się w diamentach. Jednak w macierzach takich występują naturalne defekty, które zaburzają pracę tego typu urządzeń. Naukowcy z Uniwersity of Washington chcieli precyzyjnie kontrolować miejsce, z którego będzie dochodziło do emisji fotonu.
      Wykorzystali w tym celu nałożone na jednoatomowe warstwy diselenku wolframu. Dwie takie warstwy nałożyli na podłoże, na którym znajdowały się setki kolumienek o szerokości 200 nanometrów każda. Diselenek wolframu przykrył te kolumienki, a ich obecność pod spodem doprowadziła do pojawienia się niewielkich naprężeń w materiale. W wyniku naprężeń znajdujących się w miejscu każdej z kolumienek powstała kropka kwantowa. I to właśnie te kropki są miejscem, w którym dochodzi do emisji. Dzięki precyzyjnemu impulsowi laserowemu naukowcy byli w stanie wybić elektron, tworząc w ten sposób ekscytony. Każdy z ekscytonów składał się z ujemnie naładowanego elektronu z jednej warstwy diselenku wolframu i dodatnio naładowanej dziury z drugiej warstwy. Po chwili elektron wracał w miejsce, w którym przed chwilą się znajdował, a ekscyton emitował foton z zakodowaną informacją kwantową.
      Okazało się jednak, że poza fotonami i ekscytonami jest coś jeszcze. Powstawały fonony, kwazicząstki będące produktem wibracji atomowych.
      W ten sposób po raz pierwszy zaobserwowano fonony w emiterze pojedynczych fotonów w dwuwymiarowym systemie atomowym. Bliższe analizy wykazały, że każdy foton emitowany w ekscytonu był powiązany z jednym lub więcej fononami. Naukowcy postanowili więc wykorzystać to zjawisko. Okazało się, że za pomocą napięcia elektrycznego mogą wpływać na energię interakcji pomiędzy fotonami i fononami. Zmiany te są mierzalne i można je kontrolować.
      To fascynujące, że możemy tutaj obserwować nowy typ hybrydowej platformy kwantowej. Badając interakcję pomiędzy fononami a kwantowymi emiterami, odkryliśmy zupełnie nową rzeczywistość i nowe możliwości kontrolowania i manipulowania stanami kwantowymi. To może prowadzić do kolejnych odkryć w przyszłości, dodaje Ruoming Peng, jeden z autorów badań.
      W najbliższym czasie naukowcy chcą stworzyć falowody, za pomocą których będą przechwytywali wygenerowane fotony i kierowali je w wybrane miejsca. Mają tez zamiar skalować swój system, by jednocześnie kontrolować wiele emiterów oraz fonony. W ten sposób poszczególne emitery będą mogły wymieniać informacje, a to będzie stanowiło podstawę do zbudowania kwantowego obwodu. Naszym ostatecznym celem jest budowa zintegrowanego systemu kwantowych emiterów, które mogą wykorzystywać pojedyncze fotony przesyłane za pomocą przewodów optycznych oraz fonony i używać ich do kwantowych obliczeń, wyjaśnia Li.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się dwukrotnie wykryć poruszający się pojedynczy foton, nie niszcząc go przy tym. To ważna osiągnięcie, gdyż dotychczas foton ulegał zwykle zniszczeniu podczas jego rejestrowania. Najnowsze osiągnięcie może przyczynić się do powstania szybszych i bardziej odpornych na zakłócenia sieci optycznych i komputerów kwantowych.
      Zwykle wykrycie fotonu wiąże się z jego zaabsorbowaniem. Jednak foton może nieść ze sobą cenne informacje, a w takich przypadkach specjaliści woleliby mieć możliwość odczytania tych danych i przepuszczenia fotonu dalej, do miejsca docelowego. Żadna metoda detekcji nie jest w 100% skuteczna, zawsze istnieje ryzyko, że coś się prześliźnie niewykryte, mówi jeden z autorów badań, Stephan Welte, fizyk kwantowy z Instytutu Optyki Kwantowej im. Maxa Plancka w niemieckim Garching. Dlatego też możliwość niedestrukcyjnego wykrywania fotonów jest tak ważna – ustawienie detektorów jeden za drugim zwiększa szanse, że wykryjemy wszystkie interesujące nas fotony.
      Dotychczas opracowano różne sposoby wykrywania fotonu bez jego niszczenia. Często polegają one na interakcji fotonu z jonem, nadprzewodzącym kubitem lub innymi systemami kwantowymi. Jednak w ten sposób możemy albo wykonać pojedynczą niedestrukcyjną rejestrację poruszającego się fotonu, albo liczne niedestrukcyjne odczyty stacjonarnego fotonu uwięzionego we wnęce.
      Teraz naukowcy z Niemiec dwukrotnie wykryli pojedynczy foton wędrujący światłowodem. Wykorzystali w tym celu skonstruowany przez siebie niedestrukcyjny detektor zbudowany z pojedynczego atomu rubidu uwięzionego w odbijającej wnęce. Foton, wpadając do wnęki, odbija się od jej ścian, zmieniając stan kwantowy atomu, co można wykryć za pomocą lasera. Uczeni umieścili dwa takie detektory w odległości 60 metrów od siebie. Wykryły one ten sam foton, nie absorbując go. Welte mówi, że teoretycznie można w ten sposób wykryć pojedynczy foton nieskończoną liczbę razy, jednak w praktyce istnienie 33-procentowe ryzyko, że użycie detektora spowoduje utratę fotonu.
      Nowa technologia może w przyszłości pozwolić na śledzenie trasy fotonów. Pozwoli to na przyspieszenie pracy systemów kwantowych, gdyż będziemy w stanie upewniać się, że zakodowane w fotonach informacje dotrą tam, gdzie powinny.
      Powiedzmy, że chcesz wysłać kwantową informację z Monachium do Nowego Jorku. Możesz w międzyczasie wielokrotnie sprawdzać, czy foton nie został po drodze utracony, np. sprawdzając, czy dotarł do Paryża. Jeśli okaże się, że foton zgubił się po drodze, można będzie natychmiast wysłać go ponownie. Nie trzeba będzie czekać na zakończenie całej transmisji, by upewnić się, że wszystko poszło tak, jak powinno, wyjaśnia główny autor badań, Emanuele Distante.
      Twórcy nowych detektorów uważają, że nie można ich będzie wykorzystać do podsłuchania kwantowej komunikacji. To jak śledzenie przesyłek. Możesz dowiedzieć się, gdzie jest paczka, ale nic nie wiesz o jej zawartości. Foton zawiera w sobie pewną kwantową informację. Możesz w sposób niedestrukcyjny go wykryć, ale nie odczytać, stwierdza Welte.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grupa naukowców z Uniwersytetu w Oksfordzie donosi o udanym splątaniu bakterii z fotonami. W październikowym numerze Journal of Physics ukazał się artykuł zespołu pracującego pod kierunkiem Chiary Marletto, który przeanalizował eksperyment przeprowadzony w 2016 roku przez Davida Colesa i jego kolegów z University of Sheffield.
      Podczas wspomnianego eksperymentu Coles wraz z zespołem umieścili kilkaset chlorobakterii pomiędzy dwoma lustrami i stopniowo zmniejszali odległość pomiędzy nimi tak, aż dzieliło je zaledwie kilkaset nanometrów. Odbijając białe światło pomiędzy lustrami naukowcy chcieli spowodować, by fotosyntetyczne molekuły w bakteriach weszły w interakcje z dziurą, innymi słowy, bakterie miały ciągle absorbować, emitować i ponownie absorbować odbijające się fotony. Eksperyment okazał się sukcesem. Sześć bakterii zostało w ten sposób splątanych z dziurą.
      Jednak Marletto i jej zespół twierdzą, że podczas eksperymentu zaszło coś więcej, niż jedynie połączenie bakterii z dziurą. Przeprowadzone analizy wykazały, że sygnatura energetyczna pojawiająca się podczas eksperymentu jest właściwa dla splątania molekuł wewnątrz bakterii e światłem. Wydaje się, że niektóre fotony jednocześnie trafiały w molekuły i je omijały, a to właśnie dowód na splątanie.
      Nasze modele dowodzą, że zanotowano sygnaturę splątania pomiędzy światłem a bakterią, mówi pani Marletto. Po raz pierwszy udało się dokonać splątania kwantowego w żywym organizmie.
      Istnieje jednak wiele zastrzeżeń, mogących podważać wnioski grupy Marletto. Po pierwsze i najważniejsze, dowód na splątanie zależy od tego, w jaki sposób zinterpretujemy interakcję światła z bakterią. Marletto i jej grupa zauważają, że zjawisko to można opisać też na gruncie klasycznego modelu, bez potrzeby odwoływania się do efektów kwantowych. Jednak, jak zauważają, nie można tego opisać modelem „półklasycznym”, w którym do bakterii stosujemy zasady fizyki newtonowskiej, a do fotonu fizykę kwantową To zaś wskazuje, że mieliśmy do czynienia z efektami kwantowymi dotyczącymi zarówno bakterii jak i fotonu. To trochę dowód nie wprost, ale sądzę, że wynika to z faktu, iż oni próbowali bardzo rygorystycznie podejść do tematu i nie wysuwali twierdzeń na wyrost, mówi James Wootton z IBM Zurich Research Laboratory, który nie był zaangażowany w badania.
      Z kolei Simon Gröblacher z Uniwersytetu Technologicznego w Delft zwraca uwagę na kolejne zastrzeżenie. Otóż energię bakterii i fotonu zmierzono wspólnie, nie osobno. To pewne ograniczenie, ale wydaje się, że miały tam miejsce zjawiska kwantowe. Zwykle jednak gdy chcemy dowieść splątania, musimy osobno zbadać oba systemy.
      Wiele zespołów naukowych próbuje dokonać splątania z udziałem organizmów żywych. Sam Gröblacher zaprojektował eksperyment, w którym chce umieścić niesporczaki w superpozycji. Chodzi o to, by zrozumieć nature rzeczy i sprawdzić czy efekty kwantowe są wykorzystywane przez życie. W końcu u swoich podstaw wszystko jest kwantem, wyjaśnia współpracownik Marletto, Tristan Farrow.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badacze z amerykańskiego Narodowego Laboratorium Energii Odnawialnej (NREL) poinformowali o stworzeniu pierwszego ogniwa słonecznego, którego zewnętrzna wydajność kwantowa wynosi ponad 100%. Dla fotoprądu wartość zewnętrznej wydajności kwantowej - podawaną w procentach - wylicza się na podstawie liczby elektronów przepływających przez obwód w ciągu sekundy podzielonej przez liczbę fotonów z określonej długości fali, wpadających w ciągu sekundy do ogniwa słonecznego. Dotychczas nie istniały ogniwa, których wydajność w jakimkolwiek zakresie fali przekraczałaby 100%. Uczonym z NREL udało się osiągnąć szczytową wydajność kwantową rzędu 114%. W przyszłości może to pozwolić na zbudowanie ogniw słonecznych, z których energia będzie równie tania, lub tańsza, od energii uzyskiwanej z paliw kopalnych czy energii jądrowej.
      Mechanizm uzyskania wydajności większej niż 100% bazuje na procesie zwanym Multiple Exciton Generation (MEG), podczas którego pojedynczy foton o odpowiednio wysokiej energii tworzy więcej niż jedną parę elektron-dziura.
      W roku 2001 pracujący w NREL Arthur J. Nozik przewidział, że MEG będzie lepiej działało w półprzewodnikowych kropkach kwantowych niż w zwykłych półprzewodnikach. Pięć lat później w pracy opublikowanej wraz z Markiem Hanną Nozik stwierdził, że kropki kwantowe użyte w ogniwach słonecznych mogą zwiększyć ich wydajność o około 35% w porównaniu z innymi nowoczesnymi rozwiązaniami. Ogniwa bazujące na kropkach kwantowych nazywane się ogniwami trzeciej (lub kolejnej) generacji. Obecnie buduje się ogniwa pierwszej i drugiej generacji.
      Zjawisko MEG, zwane też Carrier Multiplication (CM), zostało po raz pierwszy zaprezentowane w Los Alamos National Laboratory w 2004 roku. Od tamtej chwili wiele innych ośrodków badawczych potwierdziło jego występowanie w różnych półprzewodnikach. Teraz NREL zaprezentował MEG o wartości większej niż 100%. Badań dokonano przy niskiej intensywności symulowanego światła słonecznego, a mimo to eksperymentalne ogniwo słoneczne osiągnęło wydajność konwersji energii rzędu 4,5%. To bardzo dobry wynik, biorąc pod uwagę fakt, że ogniowo nie było optymalizowane pod kątem wydajności.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...