Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Ziemia jest najprawdopodobniej o 70 milionów lat młodsza niż dotychczas sądzono. Najnowsze badania geologiczne pokazują, że nasza planeta formowała się dłużej, niż myśleliśmy.

Międzynarodowy zespół pracujący pod kierunkiem doktora Johna Rudge z Cambridge University, wykorzystał dane geochemiczne z wnętrza Ziemi i porównał je z informacjami z meteorytów. Dotychczas uważano, że proces akrecji, w czasie którego formowała się nasza planeta, trwał około 30 milionów lat. Najnowsze badania wskazują jednak, że początkowo proces ten przebiegał szybko i w ciągu mniej więcej 30 milionów lat Ziemia zyskała 60% swojej wielkości, to jednak później zwolnił i trwał około 100 milonów lat.

W czasie akrecji w formującą się planetę uderzały dziesiątki niewielkich proto-planet. Niektóre z nich, w wyniku uderzenia, stapiały się ze sobą. Z czasem doprowadziło to do uformowania się płynnego jądra Ziemi otulonego stałym sztywnym płaszczem. Ostatnim wydarzeniem akrecji było uderzenie w Ziemię obiektu wielkości Marsa, który spowodował oderwanie się części planety i uformowanie Księżyca.

Naukowcy generalnie zgadzają się z takim przebiegiem wydarzeń, jednak nie są zgodni, jak dużo czasu formowała się Ziemia.

Podczas najnowszych badań uczeni przyjrzeli się izotopom tym pierwiastków, które mogły ulegać rozpadowi już w czasie akrecji. Na tej podstawie utworzyli szereg modeli matematycznych, które pokazywały różne możliwe scenariusze akrecji.

Szczególnie przydatny okazał się tutaj hafn 182. Rozpada się on w wolfram 182. Ślady tego wolframu można znaleźć w głębi ziemi. Można go obecnie porównać z sygnaturami z chondrytów, prymitywnych meteorytów, które czasami spadają na naszą planetę. Chondryty, w przeciwieństwie do Ziemi, nie uległy zmianom wskutek topnienia czy pod wpływem ciśnienia. Dzięki temu, że dobrze poznaliśmy poszczególne etapy rozpadu wolframu, możemy porównać jego "oryginalne" sygnatury w chondrytach ze zmienionymi w Ziemi. Tradycyjnie sprawdzano przejście pomiędzy hafnem a wolframem. Jednak tym razem uczeni porównali te dane z przejściem od uranu do ołowiu, które również miało miejsce w czasie akrecji. Po nałożeniu na siebie informacji, można było sprawdzić wszelkie nieprawidłowości.

Wszystkie wykorzystanie modele pokazały, że Ziemia niemal na pewno nie mogła uformować się w ciągu 30 milionów lat. Dane sugerują, że w 10-40 milionów lat nasza planeta uzyskała ponad 60% wielkości i rosła jeszcze przez około 70 milionów lat.

Możemy zatem przypuszczać, że Ziemia liczy sobie 4,467 miliarda lat.

Share this post


Link to post
Share on other sites

No od teraz,do tyłu.Najlepiej jak najszybciej,bo z każdym dniem Ziemia starzeje się coraz bardziej  :D

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przed 3,2 miliardami lat Ziemia mogła być wodnym światem. Tak przynajmniej wynika z badań, których wyniki opublikowano w Nature Geoscience. Badania wykonane przez naukowców z University of Colorado Boulder pomogą lepiej zrozumieć, w jaki sposób i gdzie na Ziemi pojawiły się po raz pierwszy organizmy jednokomórkowe, uważa profesor Boswell Wing.
      Wing i Benjamin Johnson prowadzili badania skał w miejscu znanym jako Panorama w północno-zachodniej części australijskiego Outbacku. Dzisiaj to porośnięte krzakami wzgórza poprzecinane dolinami wyschniętych rzek. To dziwne miejsce, mówi Johnson. Jednak można tam badać liczące 3,2 miliarda lat skały, które w przeszłości stanowiły dno oceanu. W regionie Panorama geolodzy mieli wyjątkową okazję zbadania składu chemicznego wody oceanicznej sprzed miliardów lat. Oczywiście samej wody tam nie ma, ale są skały, które wchodziły w interakcje z tą wodą i noszą ślady tej interakcji, dodaje uczony. To tak, jakby analizować ziarna kawy, by dowiedzieć się czegoś o wodzie, z którą miały styczność, wyjaśnia.
      Naukowców szczególnie interesowały izotopy tlenu. Cięższy tlen-18 i lżejszy tlen-16.
      Uczeni odkryli, że przed 3,2 miliardami lat woda morska musiała mieć inny skład niż obecnie. Było w niej minimalnie więcej tlenu-18. To niewielka różnica, ale bardzo znacząca dla naszego zrozumienia przeszłości Ziemi.
      Wing wyjaśnia, że obecnie lądy pokryte są glebami bogatymi w iły, które niczym odkurzacz wyciągają z wody 18O. Naukowcy wysunęli więc hipotezę, która mówi, że najbardziej prawdopodobnym wyjaśnieniem nadmiaru tlenu-18 w dawnym oceanie jest przyjęcie, że wówczas nie było wielkich pokrytych bogatymi glebami mas lądowych, które wyciągałyby izotop z oceanu. Co, oczywiście, nie oznacza, że w ogóle nie było suchego lądu.
      Mogły istnieć niewielkie mikrokontynenty. Uważamy jednak, że nie istniały wielkie formacje na globalną skalę, z jakimi mamy do czynienia obecnie, mówi Wing. To oczywiście rodzi pytanie, kiedy rozpoczęły się ruchy tektoniczne, które ostatecznie utworzyły Ziemię, jaką znamy obecnie. Wing i Johnson nie potrafią na nie odpowiedzieć. Już jednak planują badania młodszych formacji skalnych rozsianych od Arizony po RPA. Spróbują zidentyfikować moment, w którym na Ziemi pojawiły się pierwsze duże obszary suchego lądu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Algorytm sztucznej inteligencji zidentyfikował 11 asteroid o średnicy ponad 100 metrów każda, które mogą uderzyć w Ziemię i spowodować olbrzymie zniszczenia. Każdy z tych obiektów jest znacznie większy od meteorytu tunguskiego (50–80 metrów średnicy), który eksplodował na Ziemią i powalił drzewa na obszarze ponad 2000 km2.
      Z pisma Astronomy & Astrophysics dowiadujemy się, że naukowcy z holenderskiego Uniwersytetu w Leiden stworzyli algorytm sztucznej inteligencji, który trenowali na superkomputerze ALICE. John D. Hefele, Francesco Bortolussi i Simon Portegies Zwart wykorzystali sieć neuronową, na której najpierw modelowali ruch planet i Słońca w ciągu najbliższych 10 000 lat. Następnie „przewinęli” swoją symulację od tyłu, dodając do niej hipotetyczne asteroidy „wyrzucane” z Ziemi w przestrzeń kosmiczną.
      Gdy uruchomili symulację we właściwej kolejności, otrzymali bazę danych wyimaginowanych asteroid, które mogłyby uderzyć w Ziemię. Ta baza posłużyła im do treningu sieci neuronowej, której zadaniem było następnie określenie, która z prawdziwych znanych nam asteroid może stanowić zagrożenie dla naszej planety.
      Testy dowiodły, że oprogramowanie, nazwane Hazard Object Identifier (HOI, co po holendersku oznacza też „cześć”), potrafi zidentyfikować 90,99% potencjalnie niebezpiecznych obiektów z udostępnionej przez NASA 2000 obiektów bliskich Ziemi.
      Kolejne symulacje wykazały, że w latach 2131 – 2923 co najmniej 11 dużych, ponad 100-metrowych znanych nam obecnie asteroid, przybliży się do Ziemi na odległość mniejszą niż 1/10 odległości pomiędzy Ziemią a Księżycem.
      Obserwacje obiektów bliskich Ziemi (NEO) prowadzone są od lat. Jednak obecnie stosowane oprogramowanie nie rozpoznało w tych asteroidach zagrożenia. Stało się tak dlatego, że asteroidy mają trudne do przewidzenia orbity, a oprogramowanie to używa innych metod obliczeniowych niż wspomniany algorytm sztucznej inteligencji.
      Wiemy teraz, że nasze oprogramowanie działa. Będziemy chcieli je udoskonalić i wykorzystać w nim więcej danych. Problem w tym, że niewielkie różnice w obliczeniach orbity mogą prowadzić do bardzo różnych wniosków, mówi profesor Portegies Zwart.
      Tego typu badania pozwolą nam w przyszłości uchronić Ziemię przed katastrofalnym w skutkach zderzeniem z asteroidą. Im szybciej dowiemy się o zagrożeniu, tym więcej czasu będziemy mieli, by na nie zareagować. Nie od dzisiaj bowiem prowadzi się badania koncepcyjne nad niszczeniem czy przekierowaniem obiektów zagrażających Ziemi.
      Temat asteroid zagrażających Ziemi i obrony przed nimi poruszaliśmy już wielokrotnie w tekstach Szef NASA zaleca modlitwę, Znamy już ponad 10 000 NEO, NASA planuje test technologii ochrony Ziemi przed asteroidami, Obronienie Ziemi będzie trudniejsze, niż sądziliśmy czy Źle szacujemy ryzyko kosmicznej katastrofy?

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Popularne przekonanie mówi, że jeden rok życia psa odpowiada 7 latom życia człowieka. Oznaczałoby to, że 14-letni pies to odpowiednik ludzkiego 100-latka. Naukowcy zaproponowali jednak znacznie lepszy przelicznik wieku psiego na ludzki. Przelicznik bazujący na najnowszych osiągnięciach nauki.
      Obecnie nauka o starzeniu się bazuje na zachodzących z wiekiem chemicznych modyfikacjach DNA, czyli na zegarze epigenetycznym. Każde dodanie grupy metylowej do DNA oznacza odliczanie naszego wieku, czyli wpływu chorób, tryb życia i genetyka na kondycję naszego organizmu. Podobny mechanizm działa też u innych zwierząt.
      Genetyk Try Ideker z University of California, San Diego (UCSD) wraz z zespołem, postanowił sprawdzić, jak zegary biologiczne zwierząt różnią się od zegara biologicznego człowieka. Uczeni rozpoczęli prace od psów. Wybrali właśnie te zwierzęta, gdyż żyją one w tym samym środowisku co ludzie, a wiele z nich jest otoczonych podobną opieką medyczną co ludzie.
      Wszystkie psy, niezależnie od rasy, osiągają dojrzałość płciową około 10. miesiąca życia i umierają przed 20. rokiem życia. Ideker, chcąc zwiększyć swoje szanse na zidentyfikowanie psiego zegara biologicznego skupił się na jednej rasie – labradorach retrieverach.
      Naukowcy przeanalizowali wzorce metylacji u 104 psów, których wiek wahał się od 4 tygodni do 16 lat. Badania ujawniły, że psy – a na pewno labradory – wykazują podobne do ludzi wzorce metylacji DNA związane z wiekiem. Podobieństwa mutacji w tych samych regionach DNA były najbardziej widoczne u młodych psów i młodych ludzi oraz starych psów i starych ludzi.
      Najważniejszym spostrzeżeniem było odkrycie, że w pewnych grupach genów odpowiedzialnych za rozwój metylacja w miarę starzenia się zachodzi bardzo podobnie. To zaś sugeruje, że – przynajmniej pod niektórymi względami – proces starzenia się jest tym samym, co proces rozwoju oraz że przynajmniej te zmiany są ewolucyjnie podobne u ssaków.
      Już wcześniej wiedzieliśmy, że psy wraz z wiekiem cierpią na te same choroby i podlegają takim samym zmianom poznawczym co ludzie. Tutaj mamy dowód na to, że również na poziomie molekularnym zachodzą podobne zmiany, mówi Matt Kaeberlein, biogerontolog z University of Washington, który nie był zaangażowany w najnowsze badania. Widać zatem, że dzielimy z psami również zegar biologiczny.
      Na podstawie swoich badań naukowcy stwierdzili, że wzór na przeliczenie wieku psa na wiek człowieka wygląda następująco: wiek człowieka = 16 ln(wiek psa) + 31. Innymi słowy należy logarytm naturalny z wieku psa pomnożyć przez 16 i dodać 31.
      Wynika z tego, że 7-tygodniowy szczeniak, gdyby był człowiekiem, miałby 9 miesięcy. W tym mniej więcej czasie u młodych obu gatunków zaczynają wyżynać się zęby. Formuła ta dobrze też pasuje do przeciętnej długości życia labradora i człowieka. W przypadku tej rasy wynosi ona bowiem 12 lat, a w przypadku ludzi jest to 70 lat.
      Na początku życia zegar biologiczny psa bije znacznie szybciej niż człowieka. Dwuletni labrador wciąż zachowuje się jak szczeniak, ale gdyby był człowiekiem, wchodziłby w wiek średni.
      Wspomniany wyżej Matt Kaeberlein rozpoczął niedawno Dog Aging Project, który jest otwarty dla wszystkich ras psów. Uczony chce dowiedzieć się, dlaczego niektóre psy chorują we wczesnym wieku i szybciej umierają, a inne cieszą się długim życiem bez chorób.
      Wiek psa (w latach)Odpowiednik wieku człowieka (w latach) 1 31,0 2 42,1 3 48,6 4 53,2 5 56,8 6 59,7 7 62,1 8 64,3 9 66,2 10 67,8 11 69,4 12 70,8 13 72,0 14 73,2 15 74,3 16 75,4 17 76,3 18 77,2 19 78,1 20 78,9 21 79,7 22 80,5
      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kiedyś sądzono, że najstarszymi komórkami w organizmie człowieka są neurony i, być może, komórki serca. Teraz naukowcy z Salk Institute udowodnili, że u myszy komórki oraz białka mózgu, wątroby i trzustki są także bardzo stare. Niektóre równie stare co neurony. Metoda wykorzystana w Salk może zostać użyta do zdobycia bezcennych informacji na temat funkcji niedzielących się komórek oraz o tym, jak z wiekiem tracą one kontrolę nad jakością i integralnością protein oraz innych ważnych struktur komórkowych.
      Byliśmy zaskoczeni faktem, że odnaleźliśmy struktury komórkowe równie stare co organizm. To sugeruje, że złożoność komórkowa jest większa niż sobie to wyobrażaliśmy, co niesie ze sobą intrygujące implikacje dotyczące naszej wiedzy o starzeniu się organów takich jak mózg, serce czy trzustka, mówi dyrektor ds. naukowych Salk Institute profesor Martin Hetzer.
      Większość neuronów w mózgu nie ulega w życiu dorosłym podziałowi, zatem doświadczają starzenia się i związanego z tym spadku jakości. Dotychczas jednak naukowcy mieli problemy z określeniem czasu życia komórek znajdujących się poza mózgiem.
      Biolodzy zadawali sobie pytanie, jak stare są komórki w organizmie. Istnieje powszechne przekonanie, że neurony są stare, ale inne komórki są stosunkowo młode, gdyż ulegają regeneracji, stwierdził Rafael Arrojo e Drigo, główny autor najnowszych badań.
      Uczeni wykorzystali neurony jako punkt odniesienia dla określenia wieku innych komórek. Wykorzystali technikę oznaczania izotopami w połączeniu z hybrydową metodą obrazowania MIMS-EM do wizualizacji i oceny komórek oraz białek w móżgu, trzustce i wątrobie u młodych i starych myszy.
      Na samym początku ocenie poddali wiek neuronów i, jak się spodziewali, stwierdzili, że są one w tym samym wieku co sam organizm. Później jednak ze zdumieniem zauważyli, że w nabłonku naczyń krwionośnych występują równie stare komórki. To zaś oznaczało, że poza neuronami istnieją komórki, które się nie dzielą i nie zostają zastąpione. Również w trzustce zauważono komórki w różnym wieku. Najbardziej zdziwiły naukowców wysepki Langerhansa, które są mieszaniną starych i młodych komórek. Niektóre z komórek beta były młode, ulegały podziałowi, inne zaś były równie stare co neurony. Z kolei komórki delta w ogóle się nie dzieliły i wszystkie były stare. Trzustka okazała się zdumiewającym przykładem mozaicyzmu wiekowego, czyli organem, w którym identyczne komórki są w bardzo różnym wieku.
      Jako, że wiemy, iż wątroba potrafi się regenerować nawet w dorosłości, naukowcy zwrócili uwagę również na ten organ. Ku ich zdumieniu okazało się, że większość komórek wątroby jest w tym samym wieku, co sama mysz, podczas gdy komórki układu krwionośnego wątroby są znacznie młodsze. Mozaicyzm wiekowy wątroby może prowadzić do opracowania nowych metod regeneracji tego organu.
      Dzięki nowej technice wizualizacji jesteśmy w stanie określić wiek komórek i ich złożoność molekularnych lepiej, niż wcześniej. To otwiera nowe drzwi w badaniu komórek, tkanek i organów oraz trapiących je chorób, stwierdził współautor badań profesor Mark Ellisman z Uniwersytetu Kalifornijskiego w San Diego.
      Na następnym etapie badań naukowcy chcą zbadać różnice w długości życia kwasów nukleinowych i lipidów. Spróbują też zrozumieć, jak mozaicyzm wiekowy wpływa na zdrowie i na choroby takie jak cukrzyca typu 2.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed miliardem lat w Drodze Mlecznej powstała gromada gwiazd. Od tego czasu gwiazdy te przebyły cztery wielkie okrążenia wokół brzegów naszej galaktyki. Jej grawitacja spowodowała, że gromada rozciągnęła się w długą gwiezdną rzekę. Teraz rzeka ta przepływa w odległości zaledwie 330 lat świetlnych od Ziemi. Zdaniem astronomów, pomoże ona oszacować masę drogi Mlecznej.
      Astronomowie od dawna obserwowali te gwiazdy otoczone innymi gwiazdami. Dotychczas nie zdawali sobie jednak sprawy, że należą one do jednej grupy. Dopiero dzięki trójwymiarowej mapie tworzonej przez satelitę Gaia zauważono, że gwiazdy poruszają się razem z niemal tą samą prędkością i w tym samym kierunku. Obecnie rzeka ma 1300 lat świetlnych długości i 160 lat świetlnych szerokości.
      Zidentyfikowanie takiego pobliskiego strumienia jest jak natrafienie na igłę w stogu siana. Astronomowie od dawna patrzyli na ten strumień, spoglądali przez niego, a dopiero teraz dowiedzieliśmy się, że on tam jest, jest kolosalny i znajduje się niezwykle blisko Słońca, mówi João Alves z Uniwersytetu Wiedeńskiego, jeden z autorów badań.
      Kosmos jest pełen takich strumieni. Jednak ich badanie nastręcza kłopotów. Trudno jest bowiem odróżnić gwiazdy należące do strumienia od innych gwiazd. Zwykle też takie strumienie znajdują się znacznie dalej od nas. Zauważenie takiej struktury tak blisko bardzo nam się przyda. Tak nieduża odległość oznacza, że gwiazdy nie świecą zbyt słabo, a ich obraz nie jest zbyt zamazany, by nie można było ich badać. To marzenie każdego astronoma, dodaje Alves.
      Specjaliści mają nadzieję, że gdy dokładnie zbadają, w jaki sposób gromada gwiazd zmienia się w strumień, będą mogli określić, w jaki sposób galaktyki zyskują gwiazdy. Nowe znalezisko jest tym cenniejsze, że w tak dużych i masywnych galaktykach jak Droga Mleczna takie gromady są zwykle rozrywane i gwiazdy podążają w różnych kierunkach. Tymczasem znaleziona gwiezdna rzeka jest na tyle wielka i powiązana na tyle mocno, że pozostała nietknięta przez miliard lat, w czasie których okrążała centrum galaktyki. Nie można też wykluczyć, że należy do niej więcej gwiazd, niż wynika to ze wstępnych danych Gai.

      « powrót do artykułu
×
×
  • Create New...