Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Pitagoras wierzył, że Wszechświat oparty jest na tej samej harmonii, co muzyka, a niebiańskie sfery grają nieustannie symfonię. Po tysiącach lat musimy mu oddać honor: fizycy pracujący w Wielkim Zderzaczu Hadronów wykorzystali go do... tworzenia muzyki z cząstek elementarnych.

Wielki Zderzacz Hadronów (Large Hadron Collider, LHC) to jeden z największych eksperymentów w historii nauki. Olbrzymi cyklotron umieszczony w ośrodku CERN na granicy Francji i Szwajcarii ma na celu odkrycie nowych cząstek elementarnych, których istnienie przewidziano teoretycznie, a których nikt jeszcze nie zaobserwował. Rozpędzane do wielkich prędkości wiązki protonów zderzają się w kolistym, dwudziestosiedmiokilometrowym tunelu i rozpadają na mniejsze elementy, które z kolei rejestrowane są przez superczułą aparaturę.

Dane z rejestratorów gromadzone są do dalszej analizy. Doktor Lily Asquith przetworzyła takie dane w zapis nutowy i muzykę. Cząsteczki o różnej energii, rejestrowane przez kolejne sekcje aparatu ATLAS, odpowiadają kolejnym nutom. Wykorzystano też symulację komputerową, żeby stworzyć dźwięk, jaki prawdopodobnie będzie wydawać poszukiwany bozon Higgsa - najbardziej poszukiwana cząsteczka elementarna.

Wszystkie skomponowane w ten sposób utwory można znaleźć na stronie projektu, posłuchać, ściągnąć, poczytać o ich znaczeniu, a także dowolnie wykorzystać: wszystkie są dostępne na licencji Creative Commons. Są też zapisy nutowe. Sama „kosmiczna muzyka" brzmi dość awangardowo, ale przyjemnie dla ucha. Nadaje się na przykład doskonale do zilustrowania jakiegoś filmu science-fiction. Na YouTube pojawiają się już pierwsze filmy z wykorzystaniem muzyki „skomponowanej" na LHC.

Dr Asquith nie chodziło jednak o zabawę, czy zwariowany teoretyczny eksperyment. Uważa ona, że w ten sposób będzie można „na słuch" rozpoznać wygenerowanie przez LHC poszukiwanej cząstki. Jej zdaniem ucho ludzkie łatwiej niż oko rozpozna charakterystyczne, poszukiwane wzory wśród wielu innych.

Informatycy mogą znać anegdotę, według której podobną sztuczkę stosowano w początkach ery komputerów, kiedy zajmowały one jeszcze wielkie pomieszczenia a zamiast klawiatur i monitorów używano kart perforowanych. Inżynierowie obsługujący centra obliczeniowe podpinali często wyjście procesora do głośnika, żeby oceniać jego pracę „na słuch". Dzięki temu od razu rozpoznawali, czy napisany program wykonuje się prawidłowo, czy też się „zawiesił". Jak widać, dobre, muzykalne ucho bywa przydatne w każdej dziedzinie nauki.

Oto jak może brzmieć bozon Higgsa:

 

http://www.youtube.com/watch?v=Q0Xi6XWaIYA&hl=pl_PL&fs=1

Share this post


Link to post
Share on other sites
Inżynierowie obsługujący centra obliczeniowe podpinali często wyjście procesora do głośnika

Ciekawe dlaczego teraz się tej metody nie stosuje  :D

Share this post


Link to post
Share on other sites

@WhizzKid chyba nigdy nie słuchałeś ani trash metalu ani popu, ewentualnie masz drewniane ucho :D

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Część fizyków uważa, że w Wielkim Zderzaczu Hadronów (LHC) powstają długo żyjące cząstki, które dotychczas nie zostały wykryte. W przyszłym tygodniu w CERN odbędzie się spotkanie, na którym zostaną omówione metody zarejestrowania tych cząstek.
      W 2012 roku LHC zarejestrował obecność bozonu Higgsa, ostatniej nieuchwyconej wcześniej cząstki przewidywanej przez Model Standardowy. Jednak od tamtej pory nie znaleziono niczego nowego czy niespodziewanego. Niczego, co wykracałowy poza Model Standardowy. Nie odkryliśmy nowej fizyki, nie potwierdziliśmy założeń, z jakimi rozpoczynaliśmy prace. Może należy zmienić te założenia, mówi Juliette Alimena z Ohio State University, która pracuje przy CMS (Compact Muon Solenoid), jednym z dwóch głównych detektorów cząstek w LHC.
      Pomimo tego, że w LHC zainwestowano miliardy dolarów, to urządzenia pracuje tak, jak pracowały akceleratory przed kilkudziesięcioma laty. Fizycy od dekad zderzają ze sobą protony lub elektrony, zwiększają ich energie, by w procesie tym uzyskać nowe ciężkie cząstki i obserwować, jak w ciągu biliardowych części sekundy rozpadają się na lżejsze, znane nam cząstki. Te lżejsze są wykrywane i na podstawie ich charakterystyk wiemy, z jakich cięższych cząstek pochodzą. Tak właśnie działa i CMS i drugi z głównych wykrywaczy LHC – ATLAS (A Toroidal LHC Apparatus).
      Jednak długo żyjące ciężkie cząstki mogą umykać uwadze detektorów. Przypuszczenie takie nie jest nowe. Niemal wszystkie teorie wykraczające poza standardowe modele fizyczne przewidują istnienie długo żyjących cząstek, mówi Giovanna Cottin, fizyk-teoretyk z Narodowego Uniwersytetu Tajwańskiego. Na przykład teoria supersymetrii mówi, że każda z cząstek Modelu Standardowego ma cięższego partnera. Istnieją teorie mówiące też o istnieniu np. ciemnych fotonów i innych „ciemnych” cząstek. Dotychczas niczego takiego nie udało się zaobserwować.
      LHC nie został zaprojektowany do poszukiwania cząstek wykraczających poza Model Standardowy. CMS i ATLAS skonstruowano tak, by wykrywały cząstki ulegające natychmiastowemu rozpadowi. Każdy z nich zawiera warstwowo ułożone podsystemy rejestrujące produkty rozpadu cząstek. Wszystkie one ułożone są wokół centralnego punktu, w którym dochodzi do zderzenia. Jednak problem w tym, że jeśli w wyniku zderzenia powstanie cząstka, która będzie żyła tak długo, iż przed rozpadem zdoła przebyć chociaż kilka milimetrów, to pozostawi ona po sobie nieoczywiste sygnały, smugi, zaburzone trasy ruchu.
      Oprogramowanie służące do analiz wyników z detektorów odrzuca takie dane, traktując je jak zakłócenia, artefakty. To problem, bo my tak zaprojektowaliśmy eksperymenty, a programiści tak napisali oprogramowanie, że po prostu odfiltrowuje ono takie rzeczy, mówi Tova Holmes z University of Chicago, która w wykrywaczu ATLAS poszukuje takich zaburzeń.
      Holmes i jej koledzy wiedzą, że muszą zmienić oprogramowanie. Jednak to nie wystarczy. W pierwszym rzędzie należy upewnić się, że wykrywacze w ogóle będą rejestrowały takie dane. Jako, że w w LHC w ciągu sekundy dochodzi do 400 milionów zderzeń protonów, w samym sprzęcie zastosowano mechanizmy chroniące przed przeładowaniem danymi. Już na poziomie sprzętowym dochodzi do odsiewania zderzeń i podejmowania decyzji, które są interesujące, a które należy odrzucić. W ten sposób do dalszej analizy kierowane są dane z 1 na 2000 zderzeń. To zaś oznacza, że możemy mieć do czynienia z utratą olbrzymiej ilości interesujących danych. Dlatego też część naukowców chciałaby przyjrzeć się kalorymetrowi CMS, do którego mogą docierać długo żyjące ciężkie cząstki. Chcieliby zastosować mechanizm, który od czasu do czasu będzie odczytywał pełne wyniki wszystkich zderzeń.
      Szukanie ciężkich cząstek nigdy nie było łatwe, chociażby dlatego, że naukowcy mieli różne pomysły na to, jak je zarejestrować. To zawsze było tak, że pracowały nad tym pojedyncze osoby. A każdy z nich sam dla siebie stanowił grupę wsparcia, przyznaje James Beacham z Ohio State University. Teraz zainteresowani połączyli siły i w marcu ukazało się 301-stronicowe opracowanie autorstwa 182 naukowców, w którym zaproponowano metody optymalizacji poszukiwań ciężkich cząstek.
      Niektórzy z nich proponują, by w najbliższej kampanii, planowanej na lata 2012–2023 częściej zbierano kompletne dane ze wszystkich zderzeń. Niewykluczone, że to ostatnia szansa na zastosowanie tej techniki, gdyż później intensywność generowanych wiązek zostanie zwiększona i zbieranie wszystkich danych stanie się trudniejsze.
      Inni chcą zbudowania kilku nowych detektorów wyspecjalizowanych w poszukiwaniu ciężkich cząstek. Jonathan Feng, fizyk-teoretyk z Uniwersytetu Kalifornijskiego w Irvine, wraz z kolegami uzyskali nawet od CERN zgodę na zbudowanie Forward Search Experiment (FASER). To niewielki detektor, który ma zostać umieszczony w tunelu serwisowym w odległości 480 metrów w dół wiązki od ATLAS-a. Naukowcy zebrali już nawet 2 miliony dolarów od prywatnych sponsorów i dostali potrzebne podzespoły. FASER ma poszukiwać lekkich cząstek, takich jak ciemne fotony, które mogą być wyrzucane z ATLAS-a, przenikać przez skały i rozpadać się w pary elektron-pozyton.
      Jeszcze inna propozycja zakłada wykorzystanie pustej komory znajdującej się za niewielkim wykrywaczem LHCb. Umieszczony tam Compact Detector for Exotics at LHCb miałby poszukiwać długo żyjących cząstek, szczególnie tych pochodzących z rozpadu bozonu Higgsa.
      Jednak najbardziej ambitną propozycją jest budowa detektora o nazwie MATHULSLA. Miałby to być wielki pusty budynek wzniesiony na powierzchni nad detektorem CMS. W jego dachu miałyby zostać umieszczone czujniki, które rejestrowałyby dżety pochodzące z rozpadu długo żyjących cząstek powstających 70 metrów poniżej, wyjaśnia David Curtin z Uniwersytetu w Toronto, jeden z pomysłodawców wykrywacza. Uczony jest optymistą i uważa, że detektor nie powinien kosztować więcej niż 100 milionów euro.
      Po nocach śni nam się koszmar, w którym Jan Teoretyk powie nam za 20 lat, że niczego nie odkryliśmy bo nie rejestrowaliśmy odpowiednich wydarzeń i nie prowadziliśmy właściwych badań, mówi Beacham, który pracuje przy wykrywaczu ATLAS.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Popularny pogląd mówi, że słuchanie muzyki zwiększa kreatywność. Jednak badania przeprowadzone przez psychologów z brytyjskich University of Central Lancashire, Lancaster University oraz szwedzkiego Uniwersytetu w Gavle pokazują, że wpływ muzyki na kreatywność jest negatywny.
      Osoby biorące udział w eksperymencie zostały postawione przed problemami, których rozwiązanie wymagało kreatywności werbalnej. Jednocześnie w tle puszczano muzykę. Okazało się, że muzyka w tle „znacząco upośledza” zdolność ludzi do wykonania zadań wymagających kreatywności słownej. Co interesujące, takiego negatywnego wpływu nie zauważono, gdy w tle był szum typowy dla biblioteki lub było cicho.
      Na przykład w ramach eksperymentów badanym pokazywano trzy wyrazy (np. dress, dial, flower), a ich zadaniem było znalezienie takiego jednego skojarzonego z nimi wyrazu, który pozwalał na stworzenie innego znanego słowa. W tym przypadku wyrazem takim był „sun”, a tworzone słowa to „sundress”, „sundial” i „sunflower”. Zadanie było wykonywane albo przy odgłosach typowych dla biblioteki, albo gdy w tle puszczano jeden z trzech rodzajów muzyki – muzykę z nieznanym badanym tekstem w obcym języku, muzykę instrumentalną bez śpiewu, muzykę ze znanym tekstem.
      Znaleźliśmy silne dowody na to, że gdy w tle puszczano muzykę to, w porównaniu z ciszą, znacząco ograniczała ona możliwości badanych, mówi doktor Neil McLatchie z Lancaster University.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W CERN powstanie kolejny eksperyment przy Wielkim Zderzaczu Hadronów (LHC). Jednym z jego pomysłodawców jest Polak, dr Sebastian Trojanowski z Zakładu Fizyki Teoretycznej NCBJ. FASER – bo tak ma nazywać się nowa instalacja – będzie multidetektorem przeznaczonym do poszukiwania długożyciowych cząstek powstających w zderzeniach LHC i mogących być sygnałem istnienia hipotetycznej ciemnej materii. Obserwacje astronomiczne wskazują, że ciemnej materii powinno być we Wszechświecie kilkakrotnie więcej niż zwykłej materii "atomowej" tworzącej ludzi, planety i gwiazdy.
      Koncepcja eksperymentu FASER została zaproponowana przez dr Sebastiana Trojanowskiego i trzech innych fizyków teoretyków współpracujących z nim podczas pobytu dra Trojanowskiego na stypendium na Uniwersytecie Irvine w ramach programu Mobilność Plus finansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego. Eksperyment ma poszukiwać nowych, nieznanych dotąd cząstek, które mogą powstawać w zderzeniach protonów, na przykład w punkcie zderzenia w detektorze ATLAS. Naukowcy spodziewają się, że mogą one istnieć, ale nie zostały dotąd zarejestrowane ze względu na ich słabe oddziaływanie z materią detektora. Cząstki takie – jeśli są odpowiednio lekkie, jeśli powstają dość rzadko i na dodatek lecą wzdłuż osi wiązki zderzających się protonów, mogły dotychczas umykać uwadze eksperymentatorów – wyjaśnia dr Trojanowski (NCBJ; przebywający obecnie na stażu doktorskim na Uniwersytecie w Sheffield). Trudno byłoby je na przykład zobaczyć jako wyraźny sygnał brakującej energii w bilansie energetycznym produktów zderzenia. Szansą na ich ewentualne wykrycie jest ustawienie detektora w pewnej odległości od punktu produkcji i próba zarejestrowania oczekiwanych produktów rozpadów. Warunkiem powodzenia takiego scenariusza jest, by masa poszukiwanych cząstek była większa niż łączna masa najlżejszych produktów ewentualnego rozpadu – na przykłada pary elektron-pozyton.
      Zaproponowany i zaaprobowany właśnie przez CERN eksperyment FASER ma być ulokowany ok. pół kilometra od detektora ATLAS w tunelu serwisowym, który zbiega w kierunku tunelu LHC. Układ będzie składał się ze scyntylatorów, magnesów, detektorów śladu i kalorymetru mierzącego energię produktów, jeśli rzeczywiście dojdzie do poszukiwanego rozpadu. Całość ma mieć długość kilku metrów i częściowo składać się z układów zapasowych przekazanych przez funkcjonujące już eksperymenty LHC – tłumaczy dr Trojanowski. Największą inwestycją będzie zamówienie w CERN odpowiednich magnesów. Większość wydatków mają pokryć dwie amerykańskie fundacje: Simons i Heising-Simons.
      W projekt – poza czwórką pomysłodawców – jest obecnie zaangażowanych ponad dwudziestu uczonych ze Szwajcarii, USA i innych krajów. Harmonogram zaakceptowany przez CERN przewiduje, że prace instalacyjne zostaną wykonane w czasie kolejnej dużej przerwy w pracy LHC, a zbieranie danych rozpocznie się w cyklu badawczym LHC zaplanowanym na lata 2021-2023.
      Naukowcy od lat intensywnie poszukują nowych, nieznanych dotąd postaci materii. Obserwacje astronomiczne dostarczają trudnych do podważenia argumentów, że we Wszechświecie istnieje nieznana nam dotąd materia, która z atomami, z których składamy się my oraz wszystko co znamy, oddziałuje głównie siłami grawitacji. Mimo iż obliczenia wskazują, że tej nieznanej "ciemnej" materii jest we Wszechświecie kilkakrotnie więcej niż materii "normalnej", nie udało się jej wytworzyć lub zaobserwować jej składników w naszych laboratoriach. Proponowany eksperyment jest jedną z wielu propozycji inspirowanych tą zagadką. Cząstki, których poszukiwał będzie FASER, mogłyby być pierwszym elementem na drodze do jej rozwikłania. Ewentualne negatywne wyniki także wzbogacą naszą wiedzę i wykluczą niektóre teoretyczne koncepcje.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CERN zawiesił współpracę z profesorem fizyki teoretycznej Alessandro Strumią. Także jego macierzysta uczelnia, Uniwersytet w Pizie oraz Europejska Rada ds. Badań Naukowych, która finansuje pracę Strumii, zapowiedziały przeprowadzenie śledztwa.
      Alessandro Strumia naraził się... swoimi poglądami na temat płci.
      Uczony wystąpił 28 września podczas zorganizowanego przez CERN pierwszego Workshop on High Energy Theory and Gender. Widownia składała się głównie z kobiet. Po wystąpieniu na uczonego posypały się oskarżenia, że jest seksistą. Dwa dni później CERN oświadczył, że ze skutkiem natychmiastowym zawiesza współpracę ze Strumią i rozpoczyna śledztwo ws. wystąpienia. W tym samym oświadczeniu przedstawiciele CERN stwierdzili, że Strumia naruszył kodeks etyczny organizacji, która jest jest miejscem, gdzie każdy jest mile widziany i każdy, niezależnie od pochodzenia, wyznawanych poglądów, płci czy orientacji seksualnej, ma takie same szanse. Z kolei rektor Uniwersytetu w Pizie stwierdził, że dostępne w sieci slajdy z wystąpienia Strumii naruszają fundamentalne wartości uniwersytetu.
      Sam uczony w rozmowie z prasą powiedział: mam nadzieję, że CERN będzie chciał ze mną porozmawiać i poinformuje mnie, co nielegalnego było w moim wystąpieniu. Odnosząc się do krytyki w mediach społecznościowych Strumia stwierdził: wierzę, że uczciwa większość ludzi zrozumie, że taka jest prawda i że warto było narazić się na lincz, ale nie poddać się cenzurze.
      Co takiego zrobił Strumia? Swoje wystąpienie zaczął od przedstawienia zarzutów, zgodnie z którymi kobiety w nauce są dyskryminowane. Następnie stwierdził, że fizyka nie zależy od narodowości, rasy czy płci, ale jest otwarta po prostu dla ludzi dobrych w tym, co robią. W rzeczywistości fizyka była międzynarodowa, gdy kultura służyła nacjonalizmom, czytamy na jednym e slajdów. Przedstawił też wykresy, z których wynika, że na na wielu polach, takich edukacja, psychologa, nauki humanistyczne czy medycyna istnieje wyraźna przewaga liczby kobiet. W takich dziedzinach jak nauki ścisłe, budownictwo, praca w straży pożarnej czy w kopalniach, widzimy wyraźną przewagę mężczyzn.
      Także w CERNie kobiety stanowią mniejszość wśród fizyków czy techników. Ale, zdaniem Strumii, nie jest to przejaw dyskryminacji. Naukowiec przypomniał bowiem paradoks równości płciowej, o którym pisaliśmy. Okazuje się bowiem, że im bardziej w danym kraju przykłada się uwagę do równości płci, tym mniej kobiet studiuje nauki ścisłe. Przedstawił też wyliczenia, z których wynika, że kobiety nie są dyskryminowane jeśli chodzi o liczbę cytowań. Ponadto z jego wyliczeń wynikało, że jeśli chodzi o zatrudnianie kobiet na stanowiskach naukowych, to kobiecie-naukowiec wystarczy mniejsza liczba cytowań, by znaleźć zatrudnienie. Posłużył się tutaj własnym przykładem. Podczas gdy włoski Narodowy Instytut Fizyki Nuklearnej zatrudnił panią Silvię Penati (2130 cytowań) czy panią Annę Ceresole (3231 cytowań), to nie zatrudnił Alessandro Strumii (30785 cytowań).
      Dokonał też obliczeń dla całego CERN-u, z których wynika, że przeciętny zatrudniony w nim mężczyzna ma na swoim koncie 1464 cytowania, a pierwszy artykuł w prasie specjalistycznej opublikował w 2008 roku, natomiast przeciętna kobieta ma na koncie 853 cytowania, a pierwszy artykuł opublikowała w 2010 roku.
      Największe oburzenie zebranych wywołały jednak słowa, przytaczane często przez prasę, że fizykę wynaleźli i stworzyli mężczyźni. Natomiast kobiety, takie jak Curie zostały powitane w świecie fizycznym po tym, jak pokazały, co potrafią.
      Strumia posunął się jednak jeszcze dalej. Stwierdził, że to mężczyźni są obecnie dyskryminowani w nauce. Na poparcie tej tezy przytoczył kilka tytułów prasowych, takich jak Oxford University extends exam times for women's benefit, Italy: free or cheaper university for STEM female students, czy też Scholarships for women. Przypomniał też wciąż obowiązującą międzynarodową Konwencję o Pracy Przymusowej, która przewiduje, że do pracy przymusowej mogą być kierowani tylko mężczyźni.
      Pod koniec swojego wystąpienia Strumia stwierdził, że osoby kończące studia na wydziale fizyki są osobami z górnego przedziału IQ. Mężczyźni mają IQ podobne do kobiet, ale standardowe odchylenie jest u nich o około 15% większe, czytamy na slajdzie Strumii. Oznacza to, że wśród mężczyzn jest więcej osób bardzo inteligentnych, ale też więcej osób bardzo mało inteligentnych. Przypomniał też nazwiska kilku mężczyzn, którzy stracili pracę za poglądy oraz, że w 2016 roku CERN został bezpodstawnie oskarżony przez działaczy LGBT o homofobię.
      Na ostatnim slajdzie Strumii czytamy: Fizyka nie jest seksistowska i skierowana przeciwko kobietom. Jednak prawda nie jest ważna, gdyż stała się ona częścią wojny, która przyszła do nas z zewnątrz. Nie jest jasne, kto w tej wojnie wygra. PS. Wiele osób mówiło mi, bym nie wygłaszał tego wystąpienia, gdyż jest to niebezpieczne. Jako student napisałem, że że supersymetria w skali elektrosłabej nie działa. I przeżyłem. Mam nadzieję, że znowu się zobaczymy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po sześciu latach od odkrycia bozonu Higgsa udało się zaobserwować jego rozpad na kwarki b (kwarki niskie). Zaobserwowane zjawisko jest zgodne z hipotezą mówiącą, że pole kwantowe bozonu Higgsa nadaje masę kwarkom b.
      Model Standardowy przewiduje, że w 60% przypadków bozon Higgsa rozpada się na kwarki b, drugie najbardziej masywne kwarki. Przetestowanie tego założenia jest niezwykle ważne, gdyż opiera się ono na hipotezie, że to właśnie bozon Higgsa nadaje masę cząstkom elementarnym.
      Dokonanie najnowszego odkrycia trwało aż sześć lat, gdyż zidentyfikowanie sposobu rozpadu bozonu Higgsa nie jest łatwe. Podczas wielu zderzeń proton-proton dochodzi do pojawienia się kwarków b, przez co wyizolowanie tych kwarków, które powstały wskutek rozpadu Higgsa jest bardzo trudne. Znacznie łatwiej jest wyizolować rzadsze rodzaje rozpadu Higgsa, jak na przykład jego rozpad do pary fotonów.
      W końcu, po sześciu latach się udało. To kamień milowy w badaniu bozonu Higgsa, mówi Karl Jakobs, rzecznik prasowy eksperymentu ATLAS. Od czasu zaobserwowania przed rokiem rozpadu bozonu Higgsa do leptonów tau zespoły pracujące przy CMS i ATLAS obserwowały, jak z bozonu Higgsa powstają najbardziej masywne fermiony: tau, kwark górny, a teraz kwark b, dodaje Joel Butler, rzecznik prasowy CMS.

      « powrót do artykułu
×
×
  • Create New...