Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Uczeni z USA i Korei Południowej stworzyli najmniejszą pompę, będącą dziełem rąk ludzkich. Pompa jest wielkości czerwonej krwinki.

Twórcy pompy, Sanghyun Lee z koreańskiego Pohang University oraz Alan Hunt i Ran An z University of Michigan wykorzystali swoje wcześniejsze o kilka lat odkrycie, iż w nanoskali szkło przewodzi prąd elektryczny.

Naukowcy wykorzystali szklany substrat i za pomocą lasera wypalili w nim miniaturowy otwór, którego oba końce były przykryte niezwykle cienką warstwą szkła. Warstwa ta pod wpływem wysokiego napięcia zmienia właściwości z izolacyjnych na przewodzące. W makroskali poddanie szkła takiemu napięciu skończyłoby się jego rozgrzaniem i uszkodzeniem. W nanoskali niekorzystny proces nie zachodzi.

Gdy wspominany otwór napełniony zostanie roztworem przewodzącym prąd, staje się rodzajem płynnego przewodu elektrycznego, a szkło na jego końcach działa jak elektroda.

Zespół zaprezentował pompę, zbudowaną z trzech takich elektrod o średnicy 0,6 mikrometra każda. Po przyłożeniu napięcia pompa zaczęła działać za pomocą zjawiska elektroosmozy, dzięki któremu płyn przepłynął z jednego jej końca w drugi.

Urządzenie jest w stanie dozować płyn z prędkością 1 femtolitra (10-15) na sekundę. Może być zastosowane np. do dostarczania lekarstw do poszczególnych komórek czy do pobierania z nich próbek płynów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Może być zastosowane np. do dostarczania lekarstw do poszczególnych komórek  

Czyli będzie potrzebne jakieś 90 kg tych czipów na osobę  :D  nie prościej skorzystać  z krwiobiegu albo po staremu z żołądka.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Poza tym żołądek też korzysta dalej z krwiobiegu... Chyba że chcesz dostarczyć lekarstwa do przewodu pokarmowego.

Jak inhet słusznie zauważył, ale nie chciało mu się rozpisywać ;P - nie zawsze, gdyż istnieje coraz częściej coś takiego jak niebezpieczne lekarstwa i terapia celowana.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
gdyż istnieje coraz częściej coś takiego jak niebezpieczne lekarstwa i terapia celowana. 

Zgodnie z zasadą : po pierwsze nie szkodzić (którą wszyscy ślubowali) to co nazywasz niebezpiecznym lekarstwem jest trucizną??

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zależy jak się mają plusy takiej terapii do jej minusów. Ja przykładowo mając jakieś wstrętne choróbsko mógłbym chcieć przeżyć za cenę spartolenia moich nerek, kto inny nie. Nikt nikogo nie zmusza z tego co mi wiadomo.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Ja przykładowo mając jakieś wstrętne choróbsko mógłbym chcieć przeżyć za cenę spartolenia moich nerek, kto inny nie. 

aaa o to ci chodziło. Tak już jest że "tonący brzytwy się chwyta" a chirurg obcina nogę z gangreną , cystę, polipa, guza itd. myślałem że wiesz coś o "niebezpiecznych lekarstwach" (chemioterapia , jady).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Może być zastosowane np. do dostarczania lekarstw do poszczególnych komórek czy do pobierania z nich próbek płynów.</p>

 

Także wcale nie musi to zaraz służyć do niebezpiecznych lekarstw. Po prostu to jest jedno z zastowań.

 

Innym, na pewno równie obiecującym, jest właśnie diagnostyka precyzyjna :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Komórki wytwarzają wiele różnych związków i kompleksów, które mogą zajmować aż do 40% jej wnętrza. Z tego powodu wnętrze komórki jest niezwykle zatłoczonym środowiskiem, w którym charakteryzacja reakcji biochemicznych jest skomplikowana i złożona, pomimo ogromnego postępu nauki. Dlatego naukowcy zazwyczaj używają obojętnych chemicznie molekuł takich jak niejonowe polimery, aby naśladować naturę w probówce i poza komórką tworzyć zatłoczenie odpowiadającemu temu w naturze.
      Jak się jednak okazuje te powszechnie uważane za obojętne dla reakcji biochemicznych związki mogą kompleksować jony. A ponieważ równowaga wielu reakcji biochemicznych zależnych jest od stężenia jonów, jest to szczególnie istotne. Ostatnio, badacze z Instytutu Chemii Fizycznej Polskiej Akademii Nauk z grupy prof. Roberta Hołysta przedstawili badania przybliżające nas do zrozumienia 1000-krotnych zmian w stałych równowagi tworzenia się kompleksu biochemicznego, gdy zachodzi ona w bardzo zatłoczonym środowisku. Przyjrzyjmy się ich badaniom.
      Nasze ciało składa się z trylionów komórek bezustannie współpracujących ze sobą i pełniącymi różne funkcje. Co więcej, nasz organizm w każdej sekundzie wykonuje miliardy zawiłych operacji, a my nawet ich nie zauważamy. Reakcje przebiegające we wnętrzu pojedynczej komórki, a zwłaszcza specyficzne interakcje między indywidualnymi cząsteczkami bardzo często zależą od stężenia jonów w danym miejscu. Wiele reakcji jest szczególnie wrażliwych na zmiany siły jonowej, dlatego równowaga tworzenia się wielu kompleksów biochemicznych (np. kompleksów białko-białko, białko-RNA czy tworzenie się podwójnej nici DNA) może się istotnie zmieniać w zależności od dostępności jonów.
      Sprawę ponad to komplikuje fakt, złożona budowa komórek ludzkich. Przyjrzyjmy się bliżej cytoplazmie wewnątrz komórki. Można ją porównać do basenu pełnego pływających w nim obiektów o różnych rozmiarach i kształtach takie jak rybosomy, małe cząsteczki, białka lub kompleksy białko-RNA, nitkowate składniki cytoszkieletu, i organelle np. mitochondria, lizosomy, jądro itd. Wszystko to sprawia, że lepka, galaretowata struktura cytoplazmy jest bardzo złożonym i zatłoczonym środowiskiem. W takich warunkach każdy parametr, a w szczególności siła jonowa i pH może znacząco wpłynąć na przebieg reakcji biochemicznych. Jednym z mechanizmów utrzymywania równowagi jonowej w komórce są pompy sodowo-potasowe znajdujące się w błonie komórkowej prawie każdej ludzkiej komórki, które to są wspólną cechą dla całego życia komórkowego.
      Wspomniane zatłoczone środowisko jest często odtwarzane sztucznie, aby zrozumieć reakcje biochemiczne zachodzące wewnątrz żywych komórek. Jako modelu cytoplazmy komórki in vitro zazwyczaj używa się roztworów związków niejonowych w dużych stężeniach (∼40–50% masowego). Najczęstszymi molekułami wykorzystywanymi w tym celu są polietylen, glikol etylenowy, glicerol, fikol, oraz dekstrany. Powyższe cząsteczki uważane są powszechnie za chemicznie nieaktywne.
      Zaskakujące wyniki w tej dziedzinie zaprezentowali naukowcy z Instytutu Chemii Fizycznej PAN. Wykorzystali oni hybrydyzację oligonukleotydów DNA jako modelową, bardzo wrażliwą na stężenie jonów, reakcję biochemiczną. Stabilność tworzenia kompleksu badano w obecności różnych związków chemicznych zwiększających zatłoczenie w środowisku prowadzonych reakcji oraz w funkcji siły jonowej.
      Stężenie jonów w roztworze opisywane jest siłą jonową, która określa efektywną odległość elektrostatycznego odpychania między poszczególnymi cząsteczkami. Dlatego też sprawdziliśmy wpływ siły jonowej na hybrydyzację DNA – zauważa Krzysztof Bielec, pierwszy autor artykułu opisującego odkrycie grupy badawczej.
      Przeprowadzone eksperymenty wykazały, że interakcje między cząsteczkami są wzmacniane przy wyższym stężeniu soli oraz że dodatek polimerów zwiększających zatłoczenie i tym samym lepkość środowiska reakcyjnego także wpływa na dynamikę procesów biochemicznych utrudniając tworzenie kompleksów.
      Krzysztof Bielec komentuje: Najpierw sprawdziliśmy wpływ zatłoczenia w środowisku reakcyjnym na stałą równowagi hybrydyzacji DNA. Tworzenie dwuniciowego szkieletu DNA bazuje na oddziaływaniu elektrostatycznym między dwiema ujemnie naładowanymi nićmi. Monitorowaliśmy wpływ zatłoczonego środowiska na hybrydyzację komplementarnych nici o stężeniu nanomolowym charakterystycznym dla wielu reakcji biochemicznych w komórce. Następnie określiliśmy kompleksowanie jonów sodu w zależności od zatłoczenia. Miejsce wiązania kationu w strukturze związku zwiększającego lepkość może różnić się nawet pomiędzy cząsteczkami zawierającymi te same grupy funkcyjne. Dlatego obliczyliśmy oddziaływanie z poszczególnymi cząsteczkami w przeliczeniu na monomer i polimer upraszczając interakcje między jonami a cząsteczkami typu przeszkoda zwiększająca lepkość.
      Ku zaskoczeniu badaczy, okazało się, że powszechnie uważane za niereaktywne niejonowe polimery używane do naśladowania warunków panujących w cytoplazmie mogą kompleksować (niejako podkradać) jony niezbędne do efektywnej hybrydyzacji DNA.
      Pomimo, że nie jest to dominująca interakcja pomiędzy tymi polimerami a jonami to, gdy stosuje się ogromne stężenie polimerów (kilkadziesiąt procent masy roztworu) efekt jest znaczący.
      Określając stabilność kompleksów powstających w obecności konkretnych związków zwiększających zatłoczenie w badanym środowisku reakcyjnym autorzy badania wykazali wpływ jonów na poziomie molekularnym zbliżając nas do lepszego naśladowania warunków panujących w naturze.
      Wyniki tych eksperymentów rzucają światło na wyjaśnianie zjawisk otrzymywane dotychczas za pomocą wspomnianych systemów polimerowych oraz skłaniają do rewizji mechanizmów zachodzących w komórce, jeśli badane były środowiskach otrzymywanych sztucznie.
      Dzięki wynikom przedstawionym przez naukowców z IChF PAN jesteśmy o krok bliżej zrozumienia poszczególnych procesów molekularnych zachodzących wewnątrz komórek. Szczegółowy opis jest niezwykle ważny w wielu dziedzinach jak na przykład przy projektowaniu nowych leków, zwłaszcza w przewidywaniu konkretnych procesów zachodzących w komórkach podczas leczenia. Może być również pomocny w precyzyjnym planowaniu eksperymentów in vitro. Praca badaczy z IChF PAN została opublikowana w The Journal of Physical Chemistry Letters

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wiele trapiących nas chorób ma związek z nieprawidłowo działającymi komórkami. Być może udało by się je skuteczniej leczyć, ale najpierw naukowcy muszą szczegółowo poznać budowę i funkcjonowanie komórek. Dzięki połączeniu sztucznej inteligencji oraz technik mikroskopowych i biochemicznych uczeni z Wydziału Medycyny Uniwersytetu Kalifornijskiego w San Diego (UCSD) dokonali ważnego kroku w kierunku zrozumienia komórek ludzkiego organizmu.
      Dzięki mikroskopom możemy dojrzeć struktury komórkowe wielkości pojedynczych mikrometrów. Z kolei techniki biochemiczne, w których wykorzystuje się pojedyncze proteiny, pozwalają na badanie struktur wielkości nanometrów, czyli 1/1000 mikrometra. Jednak poważnym problemem w naukach biologicznych jest uzupełnienie wiedzy o tym, co znajduje się w komórce pomiędzy skalą mikro- a nano-. Okazuje się, że można to zrobić za pomocą sztucznej inteligencji. Wykorzystując dane z wielu różnych źródeł możemy ją poprosić o ułożenie wszystkiego w kompletny model komórki, mówi profesor Trey Ideker z UCSD.
      Gdy myślimy o komórce, prawdopodobnie przyjdzie nam do głowy schemat ze szkolnych podręczników do biologii, z jego mitochondrium, jądrem komórkowym i retikulum endoplazmatycznym. Jednak czy jest to pełny obraz? Zdecydowanie nie. Naukowcy od dawna zdawali sobie sprawę z tego, że więcej nie wiemy niż wiemy. Teraz w końcu możemy przyjrzeć się komórce dokładniej, dodaje uczony. Ideker i Emma Lundberg ze szwedzkiego Królewskiego Instytutu Technicznego stali na czele zespołu, który jest autorem najnowszego osiągnięcia.
      Wykorzystana przez naukowców nowatorska technika nosi nazwę MuSIC (Multi-Scale Integrated Cell). Podczas pilotażowych badań MuSIC ujawniła istnienie około 70 struktur obecnych w ludzkich komórkach nerek. Połowa z nich nie była dotychczas znana. Zauważono np. grupę białek tworzących nieznaną strukturę. Po bliższym przyjrzeniu się naukowcy stwierdzili, że wiąże ona RNA. Prawdopodobnie struktura ta bierze udział w splicingu, czyli niezwykle ważnym procesie składania genu.
      Twórcy MuSIC od lat próbowali stworzyć mapę procesów zachodzących w komórkach. Tym, co różni MuSIC od podobnych systemów jest wykorzystanie technik głębokiego uczenia się do stworzenia mapy komórki bezpośrednio z obrazów mikroskopowych. System został wyćwiczony tak, by bazując na dostępnych danych stworzył model komórki. Nie mapuje on specyficznych struktur w konkretnych lokalizacjach, tak jak mamy to w schematach uczonych w szkole, gdyż niekoniecznie zawsze znajdują się one w tym samym miejscu.
      Na razie w ramach badań pilotażowych uczeni opracowali za pomocą MuSIC 661 protein i 1 typ komórki. Następnym celem badań będzie przyjrzenie się całej komórce, a później innym rodzajom komórek, komórkom u różnych ludzi i u różnych gatunków zwierząt. Być może z czasem będziemy w stanie lepiej zrozumieć molekularne podstawy różnych chorób, gdyż będziemy mogli wyłapać różnice pomiędzy zdrowymi a chorymi komórkami, wyjaśnia Ideker.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W żywych komórkach niezmienne wydaje się być tylko to, że stale się zmieniają. Naukowcom z IChF PAN udało się jednak wykazać, że istnieje w nich pewna wartość, która się nie zmienia. To lepkość. Te badania, choć podstawowe, mogą przyczynić się do powstania zupełnie nowych metod diagnostycznych i leczniczych.
      Wydawałoby się, że w trakcie życia komórki, replikacji DNA, tworzenia białek, ciągłych zmian ich ilości, metabolitów itp. zachodzą w komórce tak drastyczne przemiany, że ta lepkość, związana ze stosunkiem ilości wody do ilości biologicznych cząsteczek w komórce, powinna się zmieniać.
      Tak myślało zresztą wielu naukowców, w tym i sami autorzy pracy opublikowanej w Scientific Reports. Chcieliśmy zbadać, jak zmienia się lepkość cytoplazmy w rozmaitych ważnych momentach życia komórki, np. w trakcie podziału. To dlatego wynik, czyli stałość lepkości był dla nas zupełnym zaskoczeniem, opowiada dr Karina Kwapiszewska.
      Samo sprawdzanie było procesem trudnym i żmudnym. Pełen cykl komórkowy trwa bowiem około 24 godzin, a choć można komórki zsynchronizować niczym tancerki w balecie, czyli sprawić, żeby wszystkie dzieliły się w miarę równocześnie, to nie da się namówić ich, żeby poczekały aż obserwator zrobi im zdjęcie. Będą nieprzerwanie tańczyć do wewnętrznej muzyki. Tu duży ukłon dla mojego kolegi, dr. Krzysztofa Szczepańskiego, który niejedną noc spędził w pracy robiąc pomiary za pomocą spektroskopii korelacji fluorescencji. Trzeba je robić co pół godziny w trakcie trwania całego cyklu komórkowego, a komórka przecież nie zaczeka do rana, żeby się podzielić, mówi dr Kwapiszewska. Dzięki niemu i jego wytrwałości mieliśmy zmapowaną lepkość w trakcie całego cyklu. I to w odpowiedniej liczbie powtórzeń. Tylko tak mogliśmy udowodnić, że to, co zmierzyliśmy to rzeczywisty parametr, a nie artefakt, dodaje.
      Co więcej, naukowcy z IChF PAN odkryli, że lepkość pozostaje stała niezależnie od tego, czy to komórka płuc czy np. wątroby, choć to bardzo różne tkanki. A skoro jest stała, to znaczy, że do czegoś to musi być komórce potrzebne. Zwłaszcza, że wielkość samych komórek może się w obrębie jednej populacji (np. komórek skóry) zmieniać nawet dziesięciokrotnie i to nie ma dla nich aż takiego znaczenia, jak lepkość. Musi być więc mechanizm, który to reguluje.Lepkość ośrodka ma zapewne duże znaczenie dla procesów biochemicznych. Prosto mówiąc, im większa lepkość, tym trudniej cząsteczkom się spotkać, żeby doszło do reakcji. Komórka musi aktywnie regulować tę lepkość, bo inaczej reakcje w pewnych warunkach zachodziłyby wolniej a w innych szybciej. A gdyby któraś z reakcji za bardzo zwolniła –cały układ mógłby się posypać i komórka już nigdy nie wróciłaby do równowagi.
      W jednej z wcześniejszych prac naszego zespołu (Sozański et. al., Phys Rev Lett 2015) wykazano, że wystarczy zwiększyć lepkość tylko 6 razy (to naprawdę niewiele), by zatrzymać w komórce cały transport aktywny, wyjaśnia dr Kwapiszewska. I tu dochodzimy do potencjalnych, choć na razie odległych, zastosowań odkrycia. Skoro wzrost lepkości hamuje procesy życiowe w komórce, to może da się to wykorzystać na przykład do tworzenia terapeutyków przeciwko komórkom nowotworowym. Takich, które wykorzystywałyby procesy fizyczne zamiast np. hamować replikację DNA. Podejrzewamy też, że część chorób neurodegeneracyjnych może być spowodowana lokalnym wzrostem lepkości w komórkach, mówi autorka. Jej wyrównanie mogłoby więc być sposobem na powstrzymanie uszkodzeń w chorobie Parkinsona czy Alzheimera i poprawić rokowanie chorych. Teraz badacze chcą się dowiedzieć, jak zmienia się lepkość w trakcie śmierci komórkowej i czy ta zmiana lepkości jest skutkiem, czy też przyczyną samego procesu

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Microsoft stworzył prototypowy system do przechowywania informacji w szkle. We współpracy z firmą Warner Bros. koncern zapisał oryginalny firm Superman z 1978 roku na kawałku szkła o wymiarach 75x75x2 milimetry. Prace nad zapisywaniem danych w szkle są prowadzone przez Microsoft Research i stanowią one część projektu, w ramach którego Microsoft opracowuje nowe technologie archiwizacji danych na potrzeby platformy Azure.
      Budujemy całkiem nowy system, poinformował dyrektor wykonawczy Microsoftu Satya Nadella podczas konferencji Ignite. W ramach Project Silica wykorzystywane jest standardowe szkło kwarcowe.
      Obecnie Warner Bros archiwizuje filmy przenosząc ich wersje cyfrowe na taśmę i dzieląc je na trzy kolory składowe. Monochromatyczne negatywy są bowiem bardziej odporne na upływ czasu niż filmy kolorowe. To kosztowny i długotrwały proces. Microsoft chce go uprościć i obniżyć jego koszty. Jeśli Project Silica okaże się skalowalny i efektywny ekonomicznie, to będzie czymś, co z chęcią zastosujemy. Jeśli dobrze sprawdzi się w naszym przypadku, sądzimy, że będzie też przydatny dla każdego, kto chce archiwizować dane, mówi Vicky Colf, dyrektor ds. technologicznych w Warner Bros.
      Microsoft wykorzystuje femtosekundowe lasery pracujące w podczerwieni do zapisu danych na „wokselach”, trójwymiarowych pikselach. Każdy z wokseli ma kształt odwróconej kropli, a zapis dokonywany jest poprzez nadawanie mi różnych wielkości i różnej orientacji. Na szkle o grubości 2 milimetrów można zapisać ponad 100 warstw wokseli. Odczyt odbywa się za pomocą kontrolowanego przez komputer mikroskopu, który wykorzystuje różne długości światła laserowego. Światło zostaje odbite od wokseli i jest przechwytywane przez kamerę. W zależności od orientacji wokseli, ich wielkości oraz warstwy do której należą, odczytywane są dane.
      Wybór szkła jako nośnika danych może dziwić, jednak to bardzo obiecujący materiał. Szkło może przetrwać tysiące lat. Na płytce o wymiarach 75x75x2 milimetry można zapisać ponad 75 gigabajtów danych i zostanie sporo miejsca na zapisanie informacji do korekcji błędów. Podczas testów szkło było zalewane wodą, poddawane działaniu pola magnetycznego, mikrofal, gotowane w wodzie, pieczone w temperaturze 260 stopni Celsjusza i rysowane za pomocą stalowych drapaków. Za każdym razem dane można było odczytać.
      Duża wytrzymałość szkła oznacza, że archiwa z cyfrowymi danymi będą mniej podatne na powodzie, pożary, trzęsienia ziemi, zaburzenia powodowane polem magnetycznym czy na wyłączenia prądu. Ponadto szkło zajmuje niewiele miejsca. Jego największą zaletą jest wytrzymałość. Prawdopodobnie zapisane w nim dane można będzie przechowywać przez ponad 1000 lat. Stosowane obecnie metody magnetycznego zapisu ulegają szybkiej degradacji w ciągu kilku lat, dlatego też archiwalne dane zapisane na dyskach są co jakiś czas przegrywane na kolejne urządzenia.
      Celem Project Silica nie jest stworzenie produktu dla konsumentów indywidualnych. Szklane systemy przechowywania danych mają być skierowane do firm chcących archiwizować duże ilości informacji. Nie próbujemy stworzyć czegoś, co będzie używane w domu. Pracujemy nad metodą archiwizacji w skali chmur obliczeniowych. Chcemy wyeliminować kosztowny cykl ciągłego przenoszenia i zapisywania danych. Chcemy mieć coś, co można będzie odłożyć na półkę na 50, 100 czy 1000 lat i zapomnieć o tym do czasu, aż będzie potrzebne, mówi Ant Rowstron, zastępca dyrektora laboratorium w Microsoft Research Cambridge.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wystawienie na oddziaływanie promieniowania elektromagnetycznego emitowanego przez telefon komórkowy wpływa na rozwój mózgu płodu, co potencjalnie może doprowadzić do nadaktywności.
      Zespół z Uniwersytetu Yale prowadził badania na myszach. Wyniki badań ukazały się w Scientific Reports. To pierwszy eksperymentalny dowód, że ekspozycja płodów na fale radiowe z komórek wpływa [...] na zachowanie dorosłych - twierdzi dr Hugh S. Taylor.
      Nad klatką ciężarnych myszy umieszczano wyciszony telefon komórkowy, który w czasie eksperymentu nawiązywał połączenie. Gryzonie z grupy kontrolnej trzymano w takich samych warunkach, ale telefon nie działał.
      Amerykanie oceniali aktywność mózgu dorosłych myszy. Zbadano je też za pomocą baterii testów psychologicznych i behawioralnych. Okazało się, że zwierzęta, które jako płody poddawano oddziaływaniu promieniowania elektromagnetycznego, były hiperaktywne, miały też zmniejszoną pojemność pamięciową. Wg Taylora, jest to skutkiem zaburzenia rozwoju neuronów z kory przedczołowej.
      Wykazaliśmy, że u myszy problemy behawioralne przypominające ADHD są spowodowane ekspozycją na promieniowanie elektromagnetyczne telefonów komórkowych. Wzrost częstości występowania zaburzeń zachowania u dzieci może [więc] po części być skutkiem ekspozycji na fale radiowe w okresie życia płodowego.
      Ekipa z Yale podkreśla, że potrzebne są badania na ludziach, by określić bezpieczny poziom ekspozycji w ciąży i lepiej zrozumieć wchodzący w grę mechanizm. Tamir Aldad podkreśla, że ciąża gryzoni trwa tylko 19 dni i młode rodzą się z mniej rozwiniętym mózgiem, dlatego należy sprawdzić, czy ewentualne ryzyko byłoby podobne. By oddać potencjalną ludzką ekspozycję, w ostatnim studium wykorzystano telefony komórkowe, ale w przyszłości do bardziej precyzyjnego zdefiniowania poziomu ekspozycji posłużymy się standardowymi generatorami pola magnetycznego.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...