Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Niebezpieczny mokry termometr
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Niskie średnie temperatury na Ziemi, które umożliwiły uformowanie się pokryw lodowych na biegunach, są czymś rzadkim w historii naszej planety. Nowe badania, przeprowadzone przez zespół pod kierunkiem naukowców z University of Leeds, dowodzą, że aby takie warunki klimatyczne się pojawiły, musi dojść do zbiegu wielu złożonych procesów. Uczeni badali, dlaczego Ziemia przez zdecydowaną większość swojej historii była znacznie cieplejsza niż obecnie i nie istniały na niej pokrywy lodowe na biegunach.
Dotychczas proponowano wiele hipotez, które miały wyjaśnić pojawianie się glacjałów na Ziemi. Mówiono o zmniejszonym wulkanizmie, zwiększonym pochłanianiu atmosferycznego węgla przez roślinność czy też o reakcji dwutlenku węgla ze skałami. Ciepłe warunki klimatyczne farenozoiku zostały przerwane przez dwa długotrwałe okresy ochłodzenia, w tym obecny, trwający od około 34 milionów lat. Te chłodniejsze okresy zbiegają się z niższą zawartością CO2 w atmosferze, jednak nie jest jasne, dlaczego poziom CO2 spada, piszą naukowcy na łamach Science Advances.
Na potrzeby badań stworzyli nowy długoterminowy „Earth Evolution Model”. Jego powstanie było możliwe dzięki ostatnim postępom w technikach obliczeniowych. Model pokazał, że wspomniane ochłodzenia spowodowane były nie pojedynczym procesem, a ich zbiegiem. To wyjaśnia, dlaczego okresy chłodne są znacznie rzadsze od okresów ciepłych.
Wiemy teraz, że powodem, dla którego żyjemy na Ziemi z pokrywami lodowymi na biegunach, a nie na planecie wolnej od lodu, jest przypadkowy zbieg bardzo małej aktywności wulkanicznej i bardzo rozproszonych kontynentów z wysokimi górami, które powodują duże opady i w ten sposób zwiększają usuwanie węgla z atmosfery. Bardzo ważnym wnioskiem z naszych badań jest stwierdzenie, że naturalny mechanizm klimatyczny Ziemi wydaje się faworyzować istnienie gorącego świata z wysokim stężeniem CO2 i brakiem pokryw lodowych, a nie obecny świat z niskim stężeniem CO2, pokryty częściowo lodem, mówi główny autor badań, Andrew S. Meredith. To prawdopodobnie preferencja systemu klimatycznego Ziemi ku gorącemu klimatowi uchroniła naszą planetę przed katastrofalnym całkowitym zamienieniem naszej planety w lodową pustynię. Dzięki niej życie mogło przetrwać.
Drugi z głównych autorów badań, profesor Benjamin Mills zauważa, że z badań płyną bardzo ważne wnioski. "Nie powinniśmy spodziewać się, że Ziemia zawsze powróci do chłodniejszego okresu, jaki charakteryzował epokę przedprzemysłową. Obecna Ziemia, z jej pokrywami lodowymi jest czymś nietypowym w historii planety. Jednak ludzkość zależy od tego stanu. Powinniśmy zrobić wszystko, by go zachować i powinniśmy być ostrożni, czyniąc założenia, że zatrzymując emisję powrócimy do stanu sprzed globalnego ocieplenia. W swojej długiej historii klimat Ziemi był przeważnie gorący. Jednak w czasie historii człowieka był chłodny.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dotychczasowe badania pokazywały, że w Stanach Zjednoczonych koncerny wydobywcze, konserwatywne ośrodki analityczne oraz konserwatywni filantropi biorą udział w finansowaniu grup powątpiewających w ocieplenie klimatu, służąc w ten sposób swoim interesom gospodarczym czy politycznym. Jared Furuta i Patricia Bromley z Uniwersytetu Stanforda przyjrzeli się, jak wygląda to w innych krajach.
Okazało się, że grupy czy organizacje zaprzeczające globalnemu ociepleniu są bardziej aktywne tam, gdzie prowadzona jest bardziej zdecydowana polityka na rzecz przeciwdziałania zmianom klimatu, ale ma to mniejszy związek z interesami gospodarczymi czy zależnością kraju od paliw kopalnych.
Furuta i Bromley przeprowadzili analizy statystyczne dotyczące ponad 160 krajów oraz działających w nich setek organizacji zaprzeczających zmianom klimatu. Zauważyli pozytywny związek pomiędzy polityką na rzecz zapobiegania zmianom klimatu a aktywnością i liczebnością grup zmianom tym zaprzeczającym. Jednak nie znaleźli związku pomiędzy interesami gospodarczymi kraju, wyrażanymi czy to przez emisję gazów cieplarnianych czy przez posiadanie lub zależność od paliw kopalnych, a aktywnością i siłą takich grup. Nie znaleźli też zależności pomiędzy siłą grup, a innymi czynnikami, takimi jak poziomem rozwoju gospodarczego, nierównościami społecznymi, powiązaniami z USA czy ideologią głównych graczy politycznych.
Wyniki badań sugerują zatem, że pojawianie się i działalność grup czy organizacji zaprzeczających zmianom klimatu jest dynamiczną reakcją na działania proekologiczne.
Obecnie w ponad 50 krajach na świecie działa co najmniej 1 niedochodowa organizacja, której celem jest podważanie wyników badań naukowych oraz działań podejmowanych w celu zapobiegania zmianom klimatu. Tego typu organizacje od dawna były aktywne w Stanach Zjednoczonych, ale w ostatnich latach wyewoluowały w ogólnoświatowy ruch. Są szczególnie widoczne w tych państwach, które prowadzą najbardziej zdecydowaną politykę klimatyczną, a nie w państwach o najwyższej emisji gazów cieplarnianych czy aktywności przemysłowej, stwierdzili autorzy badań.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zdaniem naukowców z University of Cambridge, wpływ wulkanów na klimat jest mocno niedoszacowany. Na przykład w najnowszym raporcie IPCC założono, że aktywność wulkaniczna w latach 2015–2100 będzie taka sama, jak w latach 1850–2014. Przewidywania dotyczące wpływu wulkanów na klimat opierają się głównie na badaniach rdzeni lodowych, ale niewielkie erupcje są zbyt małe, by pozostawiły ślad w rdzeniach lodowych, mówi doktorantka May Chim. Duże erupcje, których wpływ na klimat możemy śledzić właśnie w rdzeniach, mają miejsce najwyżej kilka razy w ciągu stulecia. Tymczasem do małych erupcji dochodzi bez przerwy, więc przewidywanie ich wpływu na podstawie rdzeni lodowych prowadzi do mocnego niedoszacowania.
Z badań przeprowadzonych przez Chim i jej zespół wynika, że modele klimatyczne nawet 4-krotnie niedoszacowują chłodzącego wpływu małych erupcji wulkanicznych. Podczas erupcji wulkany wyrzucają do atmosfery związki siarki, które gdy dostaną się do górnych jej partii, tworzą aerozole odbijające światło słoneczne z powrotem w przestrzeń kosmiczną. Gdy mamy do czynienia z tak dużą erupcją jak wybuch Mount Pinatubo w 1991 roku, emisja związków siarki jest tak duża, że spadają średnie temperatury na całym świecie. Takie erupcje zdarzają się rzadko. W porównaniu z gazami cieplarnianymi emitowanymi przez ludzi, wpływ wulkanów na klimat jest niewielki, jednak ważne jest, byśmy dokładnie uwzględnili je w modelach klimatycznych, by móc przewidzieć zmiany temperatur w przyszłości, mówi Chim.
Chim wraz z naukowcami z University of Exeter, Niemieckiej Agencji Kosmicznej, UK Met Office i innych instytucji opracowali 1000 różnych scenariuszy przyszłej aktywności wulkanicznej, a następnie sprawdzali, co przy każdym z nich będzie działo się z klimatem. Z analiz wynika, że wpływ wulkanów na temperatury, poziom oceanów i zasięg lodu pływającego jest prawdopodobnie niedoszacowany, gdyż nie bierze pod uwagę najbardziej prawdopodobnych poziomów aktywności wulkanicznej.
Analiza średniego scenariusza wykazała, że wpływ wulkanów na wymuszenie radiacyjne, czyli zmianę bilansu promieniowania w atmosferze związana z zaburzeniem w systemie klimatycznym, jest niedoszacowana nawet o 50%. Zauważyliśmy, że małe erupcje są odpowiedzialny za połowę wymuszenia radiacyjnego generowanego przez wulkany. Indywidualne erupcje tego typu mogą mieć niemal niezauważalny wpływ, ale ich wpływ łączny jest duży, dodaje Chim.
Oczywiście erupcje wulkaniczne nie uchronią nas przed ociepleniem. Aerozole wulkaniczne pozostają w górnych warstwach atomsfery przez rok czy dwa, natomiast dwutlenek węgla krąży w atmosferze znacznie dłużej. Nawet jeśli miałby miejsce okres wyjątkowo dużej aktywności wulkanicznej, nie powstrzyma to globalnego ocieplenia. To jak przepływająca chmura w gorący słoneczny dzień, jej wpływ chłodzący jest przejściowy, wyjaśnia uczona.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na łamach Nature opublikowano artykuł, którego autorzy wykazali istnienie związku pomiędzy ewolucją człowieka a naturalnymi zmianami klimatu powodowanymi przez zjawiska astronomiczne. Od dawna podejrzewano, że klimat miał wpływ na ewolucję rodzaju Homo, jednak związek ten trudno udowodnić, gdyż w pobliżu miejsc występowania ludzkich skamieniałości rzadko można znaleźć wystarczająco dużo danych, by opisać klimatu w czasie, gdy ludzie ci żyli.
Dlatego też naukowcy z Korei Południowej, Niemiec, Szwajcarii i Włoch wykorzystali model komputerowy opisujący klimat na Ziemi na przestrzeni ostatnich 2 milionów lat. To pozwoliło na określenie klimatu, jaki panował w miejscu i czasie, w którym żyli badani przez naukowców ludzi. W ten sposób opisano warunki klimatyczne preferowane przez poszczególne gatunki homininów. Stalo się to punktem wyjścia do stworzenia ewoluującej w czasie mapy z obszarami potencjalnie zamieszkanymi przez naszych przodków.
Nawet jeśli różne grupy archaicznych ludzi preferowały różny klimat, to wszystkie one reagowały na zmiany klimatu wywoływane takimi zjawiskami astronomicznymi jak zmiana nachylenia ekliptyki, ekscentryczność orbity czy precesję. Zmiany takie mają miejsce w okresach od 21 tysięcy do 400 tysięcy lat, mówi Axel Timmermann, główny autor badań i dyrektor Centrum Fizyki Klimatu na Uniwersytecie Narodowym Pusan w Korei Południowej.
Uczeni, żeby sprawdzić, czy związek pomiędzy zmianami klimatu a ewolucją rzeczywiście istnieje, powtórzyli swoją analizę, ale zmieniali dane dotyczące datowania poszczególnych skamieniałości, przypadkowo je między sobą podmieniając. Jeśli zmiany klimatu nie miały związku z ewolucją, to takie podmienienie danych nie powinno wpłynąć na wyniki analizy. Okazało się jednak, że wyniki analizy dla danych prawdziwych i przypadkowo wymieszanych zasadniczo się między sobą różniły. Wyraźnie widoczne były różnice we wzorcach wyboru habitatów przez Homo sapiens, Homo neanderthalensis i Homo haidelbergensis. Wyniki te pokazują, że co najmniej na przestrzeni ostatnich 500 000 lat zmiany klimatu, w tym okresy zlodowaceń, odgrywały kluczową rolę w wyborze habitatu przez te gatunki, co z kolei wpłynęło na miejsca znalezienia skamieniałości, mówi Timmermann.
Postanowiliśmy też poznać odpowiedź na pytanie, czy habitaty różnych gatunków człowieka nakładały się na siebie w czasie i przestrzeni, dodaje profesor Pasquale Raia z Università di Napoli Federico II w Neapolu. Na podstawie tak uzyskanych danych dotyczących nakładających się habitatów, zrekonstruowano drzewo ewolucyjne człowieka. Wynika z niego, że neandertalczycy i denisowianie wyodrębnili się z eurazjatyckiego kladu H. heidelbergensis około 500–400 tysięcy lat temu, a H. sapiens pochodzi z południowoafrykańskiej populacji H. heidelbergensis, od której oddzielił się około 300 tysięcy lat temu.
Nasza bazująca na klimacie rekonstrukcja drzewa ewolucyjnego człowieka jest więc dość podobna do rekonstrukcji wykonanej w ostatnim czasie na podstawie danych genetycznych lub danych morfologicznych. Dzięki temu możemy zaufać uzyskanym przez nas wynikom, cieszy się doktor Jiaoyan Ruan z Korei Południowej.
Niezwykłej rekonstrukcji dokonano za pomocą południowokoreańskiego superkomputera Aleph, który pracował nieprzerwanie przez 6 miesięcy, by stworzyć największą z dotychczasowych symulacji przeszłego klimatu. Model obejmuje aż 500 terabajtów danych. To pierwsza ciągła symulacja ziemskiego klimatu obejmująca ostatnie 2 miliony lat i uwzględniająca pojawiania się i znikanie pokryw lodowych czy zmiany w stężeniach gazów cieplarnianych. Dotychczas paleoantropolodzy nie używali tak rozległych modeli paleoklimatycznych. Nasza praca pokazuje, jak przydatne są to narzędzia, dodaje profesor Christoph Zollikofer z Uniwersytetu w Zurichu.
Uczeni mówią, ze w swoich danych zauważyli interesujący wzorzec dotyczący pożywienia. Wcześni afrykańscy hominini żyjący pomiędzy 2 a 1 milionem lat temu preferowali stabilne warunki klimatyczne, co ograniczało ich do wąskich habitatów. Przed około 800 tysiącami lat doszło do zmiany klimatu, w wyniku której grupa znana pod ogólnym terminem H. heidelbergensis dostosowała się do szerszego spektrum źródeł pożywienia, dzięki czemu mogli wędrować po całym globie, docierając do odległych regionów Europy i Azji, dodaje Elke Zeller z Korei. Nasze badania pokazują, że klimat odgrywał kluczową rolę w ewolucji rodzaju Homo. Jesteśmy, kim jesteśmy, gdyż przez wiele tysiącleci udało nam się dostosowywać do powolnych zmian klimatu, wyjaśnia profesor Timmermann.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Profesor Nishant Malik z Rochester Institute of Technology opracował model matematyczny, który dowodzi, że to zmiany klimatyczne były prawdopodobną przyczyną rozkwitu i upadku cywilizacji doliny Indusu. Ta pierwsza wysoko rozwinięta cywilizacja na terenie subkontynentu indyjskiego, zwana też kulturą Mohendżo Daro lub kulturą harappańską (od Harappy), istniała równocześnie z cywilizacją starożytnego Egiptu i Mezopotamii. Jak twierdzi Malik, zagładę przyniosły jej zmiany wzorca monsunów.
Malik stworzył nowy model matematyczny służący do pracy z danymi paleklimatycznymi. Informacje na temat klimatu z przeszłości możemy zdobyć badając np. obecność izotopów. Na przykład do odtworzenia ostatnich 5700 lat historii klimatu w regionie, że rozwijała się cywilizacja Mohendżo Daro, naukowcy wykorzystują izotopy obecne w stalagmitach Azji Południowej. Na ich podstawie można bowiem odtworzyć wzorce opadów.
Malik zauważył, że narzędzia matematyczne używane obecnie do analizowania takich danych są bardzo niedoskonałe. Zwykle otrzymujemy krótkie serie danych, pełne różnego typu zakłóceń i obarczonych sporym marginesem niepewności, mówi uczony. Klimat i pogoda to systemy dynamiczne. Jednak matematyczną teorię systemów dynamicznych trudno jest zastosować do danych paleklimatycznych. Nowa metoda pozwala uzupełnić luki pomiędzy krótkimi seriami dostępnych danych, stwierdza uczony.
Istnieje kilka różnych teorii dotyczących upadku cywilizacji Doliny Indusu. Mówi się o inwazji, trzęsieniach ziemi, zmianach klimatu. Ta ostatnia przyczyna jest uważana za najbardziej prawdopodobną, jednak to dopiero badania Malika dostarczają pierwszego matematycznego dowodu na jej prawdziwość. Przeprowadzone przez niego analizy wykazały, że do zmian wzorca monsunów doszło bezpośrednio przed pojawieniem się tej cywilizacji, a bezpośrednio przed jej upadkiem wzorzec monsunów ponownie uległ zmianie.
Opracowana przez Malika metoda łączy w sobie trzy różne sposoby analizy nielinearnych serii danych: układów rekurencyjnych (recurrence plot), eigenmaps Laplace'a oraz informacji Fishera.
Metodę tę zastosowano do danych paleoklimatycznych z Azji Południowej, obejmujących okres ostatnich 5700 lat. Jednym z najbardziej istotnych wydarzeń, jakie miały miejsce w tym czasie było pojawienie się i upadek cywilizacji doliny Indusu. Rozkwitała ona mniej więcej w latach 3300–1300 przed Chrystusem. Jest ona znana z infrastruktury miejskiej czy opracowania zaawansowanych systemów pomiaru długości i masy. Ostatnie badania wskazują, że mogła ona obejmować 5 milionów osób i rozciągała się od północno-wschodniego Afganistanu po północno-zachodnie Indie. Ewolucję tej cywilizacji można podzielić na trzy fazy: wczesną (3300–2600 p.n.e.), dojrzałą (2600–1900 p.n.e.) oraz późną (1900–1300 p.n.e.). Lata 1300–700 p.n.e. to okres postharappański po całkowitym upadku cywilizacji doliny Indusu. Na załączonej grafice widać, jak zmieniała się liczba osad w poszczególnych okresach i do jak dramatycznego spadku doszło w okresach końcowych.
Specjaliści wymieniają trzy możliwe przyczyny upadku cywilizacji doliny Indusu. Są to inwazja plemion indo-aryjskich, trzęsienia ziemi oraz zmiana klimatu. Na inwazję nie mamy zbyt wielu dowodów, jednak istnieją dowody na trzęsienia ziemi, które mogły zmienić bieg systemów rzecznych zapewniających istnienie cywilizacji. Ostatnio jednak zaczęło pojawiać się coraz więcej dowodów wskazujących na zmiany klimatyczne jako przyczynę jej upadku.
Malik i jego zespół podkreślają, że większość osad cywilizacji doliny Indusu było zlokalizowanych w systemie rzecznym Ghaggar-Hakra, który jest zasilany przez monsun. Dlatego też zmiany klimatu od dawna były brane pod uwagę jako przyczyna upadku cywilizacji. Brakowało jednak na to jednoznacznych dowodów.
Dzięki nowej analizie danych paleoklimatycznych naukowcom udało się wykazać, że około 1500 lat przed naszą erą (± 88 lat) doszło do radykanej zmiany wzorca monsunów. Zmiana ta zbiega się w czasie z upadkiem cywilizacji. Jednak to nie wszystko. Wcześniej, bo około 3259 lat przed Chrystusem (± 88 lat) również zaszła zamiana. Ona z kolei zbiega się z pojawieniem się badanej cywilizacji. Wszystko wskazuje więc na to, że cywilizacja Mohendżo Daro pojawiła się i rozwijała pomiędzy dwiema zmianami wzorca monsunów, które zasilały system Ghaggar-Hakra.
Co więcej, uczeni zaobserwowali też trzy zestawy danych odpowiadające trzem różnym dynamikom monsunu i różnym etapom ewolucji cywilizacji doliny Indusu. Jako, że opady monsunowe są wrażliwe na albedo Ziemi, naukowcy sądzą, że do pierwszej zmiany monsunów, która umożliwiła powstanie cywilizacji, przyczynił się koniec holoceńskiego optimum klimatycznego. Koniec ocieplania się klimatu spowodował pojawienie się korzystnego wzorca monsunów. Przez kolejnych 2000 lat monsuny były silniejsze i zasilały system rzeczny, nad którym rozwinęła się cywilizacja. Po tym czasie, prawdopodobnie z powodu zmian w zasięgu lodowców, monsuny osłabły, dolina Indusu zaczęła wysychać i nie była w stanie utrzymać dużej cywilizacji rolniczej.
Badania Malika zostały opisane w artykule pt. Uncovering transitions in paleoclimate time series and the climate driven demise of an ancient civilization.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.