Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'tworzywo sztuczne' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. W tworzywach sztucznych używana jest olbrzymia liczba środków chemicznych, z których znaczna część nie została dobrze przebadana, a wiele potencjalnie szkodliwych związków jest dopuszczonych do kontaktu z żywnością. Do takich wniosków doszli naukowcy ze Szwajcarskiego Federalnego Instytutu Technologii w Zurichu (ETH Zurich), którzy stworzyli pierwszą dużą bazę danych monomerów, dodatków i związków ułatwiających produkcję wykorzystywanych w plastikach. Szwajcarzy zidentyfikowali w tworzywach sztucznych około 10 500 związków chemicznych. Wśród nich 2489 używanych jest w opakowaniach, do tekstyliów trafia 2429 środków, kontakt z żywnością ma 2109 związków chemicznych, a 522 różne związki są wykorzystywane do produkcji zabawek. Z kolei w urządzeniach medycznych, w tym maseczkach, znajdziemy 247 związków chemicznych. Co więcej, spośród wspomnianych 10 500 substancji aż 2480 (24%) to związki o potencjalnie szkodliwym wpływie na zdrowie. To oznacza, że niemal 1/4 wszystkich chemikaliów używanych w plastikach to albo związki wysoce stabilne, albo akumulują się w organizmie, albo są toksyczne. Są to często substancje toksyczne dla zwierząt wodny, powodujące nowotwory lub uszkadzające konkretne narządy, mówi główna autorka badań, Helene Wiesinger. Uczona dodaje, że niemal połowa z tych potencjalnie szkodliwych substancji jest masowo produkowana w Unii Europejskiej lub Stanach Zjednoczonych. Najbardziej uderzający jest fakt, że wiele z tych potencjalnie niebezpiecznych substancji podlega bardzo słabym regulacjom lub nie są dokładnie opisane, mówi Wiesinger. Z badań wynika, że aż 53% potencjalnie niebezpiecznych substancji w ogóle nie podlega żadnym regulacjom ani w USA, ani w UE, ani w Japonii. Jeszcze bardziej zaskakujący jest fakt, ze 901 potencjalnie niebezpiecznych substancji zostało zatwierdzonych do kontaktu z żywnością. A dla około 10% takich substancji Szwajcarzy nie znaleźli żadnych opracowań naukowych. Tworzywa sztuczne wytwarzane są z organicznych polimerów zbudowanych z powtarzających się monomerów. W czasie produkcji dodaje się wiele różnych związków chemicznych, jak przeciwutleniacze, plastyfikatory, opóźniacze spalania itp. itd., które nadają plastikom pożądne właściwości. Ponadto używa się katalizatorów, rozpuszczalników i innych związków ułatwiających sam proces produkcyjny oraz obróbkę plastiku. Badacze, ustawodawcy i sam przemysł skupiają się głównie na niewielkiej liczbie niebezpiecznych chemikaliów, o których wiadomo, że znajdują się w plastikach, mówi Wiesinger. Tymczasem wiemy, że plastikowe opakowania to główne źródło organicznych zanieczyszczeń żywności, a ftalany i bromowane opóźniacze spalania wykrywane są w kurzu i powietrzu w pomieszczeniach. Coraz częściej ukazują się też badania dowodzące, że w tworzywach sztucznych znajduje się znacznie więcej niebezpiecznych substancji niż przypuszczano. Jednak Szwajcarów najbardziej zaskoczył i zmartwił fakt, że wykorzystuje się tak wiele potencjalnie niebezpiecznych substancji. Kontakt z takimi substancjami może mieć negatywny wpływ na zdrowie konsumentów, pracowników fabryk plastiku oraz na środowisko. Wpływają one też negatywnie na proces recyklingu, jego bezpieczeństwo i jakość przetworzonego plastiku. Nie można jednak wykluczyć, że potencjalnie niebezpiecznych jest znacznie więcej substancji. Szwajcarzy zauważają, że 4100 (39%) chemikaliów, które zidentyfikowali w plastikach, nie zostało nigdzie zakwalifikowanych pod względem bezpieczeństwa. Uczeni zbierali dane do swojej pracy przez ponad 2,5 roku. W tym czasie przeanalizowali ponad 190 publicznie dostępnych źródłem informacji z instytucji badawczych, przemysłu oraz źródeł urzędowych. Znaleźliśmy wiele luk w tych danych. Braki dotyczyły szczególnie opisu substancji i ich konkretnych zastosowań. To zaś negatywnie wpływa na możliwość podjęcia przez konsumenta decyzji, co do plastiku, jaki chce używać. Wyniki badań zostały opisane w artykule Deep Dive into Plastic Monomers, Additives, and Processing Aids. « powrót do artykułu
  2. Australijscy naukowcy nałożyli na tworzywo sztuczne cienką warstwę metalu, a następnie użyli strumienia jonów do zmieszania metalu z polimerem. Uzyskali w ten sposób materiał, który jest tani, wytrzymały, elastyczny i przewodzi prąd. Badania zespołu profesorów Paula Mareditha i Bena Powella z University of Queensland oraz profesora Adama Micolicha z University of New South Wales zostały opisane w magazynie ChemPhysChem. Uczeni od niemal 30 lat starali się zastosować strumienie jonów, szeroko wykorzystywane w przemyśle półprzewodnikowym, w produkcji przewodzących materiałów. Jednak dotychczas sprawdzały się one jedynie w pracy z krzemem. Naszemu zespołowi udało się zastosować strumień jonów do zmiany właściwości plastiku tak, by przewodził prąd jak metale, a nawet by po schłodzeniu do odpowiedniej temperatury działał jak nadprzewodnik - stwierdził profesor Meredith. Australiczycy, chcąc zademonstrować możliwości swojego materiału, stworzyli zeń przemysłowy termometr rezystancyjny i porównali go z termometrem platynowym. Urządzenie z plastiku charakteryzowało się porównywalną a nawet większą dokładnością. Najbardziej interesującą właściwością nowego materiału jest możliwość precyzyjnego ustawienia przewodnictwa i oporności. Można je zmieniać w zakresie 10 rzędów wielkości, co oznacza, że materiał pozwala na ustawienie 10 miliardów różnych wartości.
  3. Uczeni z Ohio State University (OSU) zaprezentowali pierwszy układ spintronicznej pamięci z tworzyw sztucznych. Plastik może zatem w przyszłości stać się alternatywą dla półprzewodników. W najnowszym numerze Nature Materials Arthur J. Epstein, profesor fizyki i chemii opisuje jak wraz z kolegami stworzyli protytypową plastikową pamięć spintroniczną, używając do tego celu technik wykorzystywanych standardowo przez przemysł półprzewodnikowy. Epstein opisuje nowy materiał jako hybrydę organicznego półprzewodnika i magnetycznego półprzewodnika polimerowego. Spintronika to, obok mechaniki kwantowej, jedna z potencjalnych dróg, którymi rozwiną się komputery przyszłości. Wykorzystanie spinu elektronów w miejsce ich obecności bądź braku, ma liczne zalety. Od możliwości przechowania i przesłania dwukrotnie większej ilości danych na każdy elektron, poprzez energooszczędność i związane z tym znacznie mniejsze wydzielanie ciepła oraz możliwość gęstszego upakowania poszczególnych elementów układów scalonych. Jeśli zaś moglibyśmy produkować spintroniczne tworzywa sztuczne, będziemy mieli do czynienia z lekką i elastyczną elektroniką. Kamieniem milowym na drodze do plastikowej spintroniki stał się tetracyjanoetanol wanadu, pierwszy organiczny magnes, pracujący w temperaturze powyżej temperatury pokojowej. Jego twórcami są Epstein oraz Joel S. Miller z University of Utah. Naszym głównym osiągnięciem jest użycie tego polimerowego magnetycznego półprzewodnika jednocześnie jako polaryzatora spinu, co oznacza, że możemy zapisywać dane używając słabego pola magnetycznego, oraz wykrywacza spinu, co pozwala nam odczytywać dane - mówi doktor Jung-Woo Yoo, który współpracował z oboma uczonymi. Jesteśmy bliżej opracowania podobnego, całkowicie już organicznego, urządzenia - dodał. Na obecnym stadium prototyp wygląda jak cienki pasek tworzywa sztucznego umieszczony pomiędzy dwoma warstwami metalicznego ferromagnetyku. W prototypowej pamięci elektrony są umieszczane w polimerze, a magnes nadaje kierunek ich spinowi. Elektrony mogą następnie przejść do konwencjonalnej warstwy magnetycznej, ale tylko wówczas, gdy ich spin jest jednakowy. W przeciwnym razie zbyt duża rezystancja uniemożliwia przejście. Odczyt danych polega na pomiarze wartości oporu. Podczas testów materiał został poddany działaniu pola magnetycznego, którego siła z czasem ulegała zmianie. Naukowcy, by sprawdzić, czy udało się uzyskać w elektronach dokładnie takie dane, jakie chcieli, przepuścili prąd przez obie warstwy magnetyczne. Badania wykazały, że w zapisie nie było błędów. Każda fabryka, która obecnie produkuje układy scalone, jest w stanie wykonać takie urządzenia. Dodatkowo do jego wytworzenia wykorzystaliśmy temperatury pokojowe, cały proces jest zatem bardzo przyjazny środowisku - powiedział Yoo.
  4. Już za kilka lat do produkcji pleksiglasu możemy zacząć wykorzystywać... bakterie. O odkryciu interesujących cech niektórych mikroorganizmów informują niemieccy naukowcy. Pleksiglas, zwany także szkłem akrylowym, zbudowany jest z cząsteczek poli(metakrylanu metylu) (ang. polymethyl methacrylate - PMMA). Obecnie jest on wytwarzany na drodze chemicznej, zaś surowcami do jego produkcji są związki zawarte w ropie naftowej. Nie dziwi w związku z tym fakt, że poszukiwana jest metoda bardziej przyjazna dla środowiska i, co ważne, opłacalna w dobie kończących się powoli zapasów "czarnego złota". Nowy pomysł na syntezę metakrylanu polimetylu zakłada zastosowanie w tym celu osiągnięć "białej", czyli przemysłowej, biotechnologii. Autorami technologii są naukowcy z dwóch niemieckich instytucji: Uniwersytetu w Duisburgu i Essen oraz Centrum Nauk Przyrodniczych im. Helmholtza. W jednym z gatunków bakterii odnaleźli oni enzym, zwany mutazą 2-hydroksyizobutyrylu, zdolny do przeprowadzenia reakcji kluczowej dla syntezy PMMA. Co ciekawe, do odkrycia doszło podczas prac nad zupełnie innym projektem, mającym na celu rozkład silnej toksyny - eteru metylo-tert-butylowego. Odkryty enzym posiada zdolność do zmiany położenia atomów wewnątrz łańcuchów złożonych z czterech atomów węgla. Uzyskiwana jest w ten sposób struktura rozgałęziona zamiast typowej cząsteczki liniowej. Właśnie taki kształt molekuł jest optymalny dla syntezy szkła akrylowego. Istotną cechą odkrytego procesu jest możliwość całkowitej rezygnacji ze stosowania produktów ropopochodnych na rzecz łatwo dostępnych związków organicznych, takich jak cukry czy kwasy tłuszczowe. W praktyce oznacza to, że PMMA będzie można uzyskiwać z wielu rodzajów zwykłych śmieci. Wysiłek szefa zespołu pracującego nad nową metodą produkcji pleksiglasu, dr Thore Rohwedera, został doceniony. Badacz otrzymał nominację do nagrody przyznawanej przez firmę chemiczną Evonik, jednego z potentatów obsługiwanego przez siebie rynku. Jeżeli zaś technologię uda się wdrożyć na skalę przemysłową, co może, zdaniem samego autora, nastąpić za cztery lata, wówczas dodatkową nagrodą mogą być także wielkie pieniądze. Światowy rynek produkcji PMMA, wart około 4 miliardów euro rocznie, z pewnością jest bowiem otwarty na kolejne innowacje...
×
×
  • Dodaj nową pozycję...