Znajdź zawartość
Wyświetlanie wyników dla tagów 'trójwymiarowy' .
Znaleziono 4 wyniki
-
Po raz pierwszy w historii nauki nie trzeba chemicznie utrwalać, barwić ani preparować komórek, by móc je zbadać. Dzięki rentgenowskiemu mikroskopowi nanotomograficznemu, najnowszemu wynalazkowi specjalistów z Centrum Helmholtza w Berlinie (Helmholtz-Zentrum Berlin, HZB), da się analizować całe żywe komórki w ich naturalnym środowisku. Zostają one szybko zamrożone, a akademicy zyskują trójwymiarowy obraz najmniejszych nawet elementów strukturalnych ssaczych komórek. Nowy mikroskop w jednym etapie zapewnia obraz 3D całej komórki. Daje mu to sporą przewagę nad mikroskopem elektronowym, w przypadku którego trójwymiarowy obraz uzyskuje się dopiero po zestawieniu wielu cienkich przekrojów. Proces rekonstruowania w ten sposób pojedynczej komórki może zająć tygodnie. Co więcej, w odróżnieniu od mikroskopów fluorescencyjnych, gdzie by zobaczyć jakąś strukturę, korzysta się z tzw. fluoroforów, czyli substancji chemicznych fluoryzujących po wzbudzeniu światłem o określonej długości, tutaj nie trzeba używać żadnych znaczników. Mikroskop berlińczyków bazuje na naturalnym kontraście między materiałem organicznym a wodą. Zespół doktora Gerda Schneidera z Instytutu Tkanek Miękkich i Materiałów Funkcjonalnych współpracował z naukowcami z amerykańskiego National Cancer Institute. Akademicy uzyskali trójwymiarowy obraz komórek mysiego gruczolakoraka. Ujrzeli obie błony otoczki jądrowej, pory jądrowe, liczne wgłębienia błony wewnętrznej mitochondrium oraz wtręty (inkluzje) komórkowe w różnych organellach komórkowych, np. lizosomach. Nietrudno się domyślić, że dysponowanie tak szczegółowym obrazem pomoże w wyjaśnieniu wielu procesów, m.in. sposobu wnikania wirusów i nanocząstek do komórki lub jądra. Między innymi w wyniku zastosowania specjalnych soczewek, rentgenowski mikroskop nanotomograficzny gwarantuje zdolność rozdzielczą rzędu 30 nanometrów; dla porównania 10 nanometrów to 1/10 średnicy ludzkiego włosa. Podczas testów z wykorzystaniem synchrotronu BESSY II z HZB niemiecko-amerykański zespół oświetlał obiekty światłem o częściowej koherencji czasowej (w takim przypadku relatywne fazy dwóch fal elektromagnetycznych podlegają losowym fluktuacjom, ale nie są one na tyle duże, by fale stały się zupełnie niespójne). Obraz uzyskiwany za pomocą światła o częściowej koherencji zapewnia znacznie większy kontrast niż obraz generowany przy użyciu światła niespójnego (niekoherentnego). Nowa mikroskopia rentgenowska pozwala na pozostawienie wokół próbki szerszego marginesu, co daje lepszy ogląd przestrzenny. Wcześniej był on ograniczony ze względu na wymogi układu oświetleniowego. Początkowo specjalna przysłona wyłapywała z monochromatycznego promieniowania rentgenowskiego fale o określonej długości. Niestety, musiała się ona znajdować tak blisko próbki, że nie dało się nią poruszać. Naukowcy opracowali jednak specjalny kondensator, który zbiera monochromatyczne światło i bezpośrednio oświetla obiekt. Dzięki temu próbkę można obracać w zakresie 158 stopni. Mamy tu więc chyba do czynienia z twórczym rozwinięciem metody PIXE, w ramach której analizuje się widmo promieniowania rentgenowskiego, emitowanego przez materiał bombardowany wiązką naładowanych cząstek z akceleratora (tutaj synchrotronu).
- 3 odpowiedzi
-
- całe
- żywe komórki
-
(i 5 więcej)
Oznaczone tagami:
-
W microsoftowym Applied Science Lab trwają prace nad wyświetlaczem, który nie tylko pozwala wielu osobom oglądać jednocześnie różne obrazy, ale pokazuje je w trzech wymiarach i to bez konieczności noszenia specjalnych okularów. Technologia, nazwana roboczo Wedge, ma w założeniu umożliwić np. wykorzystanie jednego telewizora do oglądania kilku programów na pełnym ekranie czy użycie jednego monitora do gry w trybie "multiplayer" bez konieczności dzielenia ekranu na części. Głównym elementem nowej technologii jest plastikowa płyta o grubości około centymetra, którą zaprojektowano tak, by działała jak płaska soczewka. Jeśli teraz przy jednej z krawędzi umieścimy serię komputerowo sterowanych diod LED, to będziemy mogli kierować światło przez płytę tak, by padało w różnych kierunkach. Całość, znajdującą się za wyświetlaczem ciekłokrystalicznym, połączono z czujnikiem 3D i kamerą, która śledzi ludzi znajdujących się przed wyświetlaczem i pilnuje, by do każdego z nich docierał odpowiedni obraz. Dzięki komputerowemu sterowaniu diodami obraz trafia do odpowiedniego odbiorcy nawet wówczas, gdy się on przemieszcza. Jakby jeszcze tego było mało Wedge zostało wyposażone w oprogramowanie do rozpoznawania twarzy, które jest w stanie określić położenie oczu każdej z osób. System może więc wyświetlić różny obraz dla prawego i lewego oka, tworząc wrażenie 3D bez konieczności zakładania specjalnych okularów. Dwa tygodnie temu Nintendo pokazało system 3DS, który również zapewnia trójwymiarowy obraz bez wkładania okularów. Jednak użytkownik tego systemu może zobaczyć obraz 3D tylko z określonej pozycji. Technologia Microsoftu pozwala widzieć go niezależnie od położenia oczu względem wyświetlacza. Dziennikarz Seattle Post Intelligencera, który był w laboratoriach Microsoftu i oglądał nową technologię zapewnia, że wszystkie pokazane mu prototypy działały. Zauważa jednak, że nawet Stevie Bathiche, kierownik zespołu badawczego, nie jest w stanie powiedzieć, kiedy nowa technologia może trafić na rynek. Na pewno nie stanie się to w najbliższym czasie, ale zaawansowanie projektu daje nadzieję, że nie będziemy musieli czekać wielu lat. Obecnie eksperci pracują przede wszystkim poprawą jakości obrazu. Współczesne wyświetlacze zawiesiły poprzeczkę bardzo wysoko. Jesteśmy w stanie uzyskać taką jakość, jednak będzie to wymagało od nas wiele wysiłku - mówi Bathiche. Kolejny problem to waga plastikowej płytki. Jest ona na tyle ciężka, że wyświetlacze o dużych przekątnych mogłyby ważyć około 50 kilogramów. Dlatego też trwają prace nad zmniejszeniem jej grubości. Osoby pracujące nad Wedge trafiły do Microsoftu w 2007 roku, gdy koncern kupił firmę CamFPD założoną przez pracowników Cambridge University. Pomysłodawcą Wedge jest Adrian Travis wykładowca tego uniwersytetu i były dziekan ds. studenckich. Do pracy nad oprogramowaniem Wedge zaprzęgnięto Moshe Lutza, który wcześniej pracował nad wieloma wersjami Microsoft Office.
- 2 odpowiedzi
-
- Stevie Bathiche
- Applied Science Lab
-
(i 6 więcej)
Oznaczone tagami:
-
Miniaturowy peryskop, umożliwiający obserwację komórek mikroorganizmów z wielu stron jednocześnie, został opracowany przez naukowców z Vanderbilt University. To proste urządzenie znacząco obniży koszty wykonywania badań laboratoryjnych i uprości mikroskopowanie. Korzystając ze standardowego mikroskopu laboratoryjnego można oglądać komórki tylko z jednej strony - z góry, tłumaczy dr Chris Janetopoulos, jeden z badaczy pracujących nad miniaturowym peryskopem. Jak wyjaśnia naukowiec, dzięki opracowanemu wynalazkowi możemy oglądać nie tylko wierzch komórek, lecz także ich boki, czyli to, czego biolodzy praktycznie nie dostrzegają. Konstrukcja przyrządu jest niezwykle prosta. Przypomina on standardowe szkiełko podstawowe do mikroskopowania, lecz na jego powierzchnię naniesione są liczne zagłębienia w kształcie odwróconych do góry nogami piramidek. Ich wnętrza są pokrywane, w zależności od wersji, warstewką złota lub platyny, pełniącą funkcję zwierciadła. Wielkość pojedynczego otworu jest porównywalna do średnicy ludzkiego włosa, lecz skonstruowanie modelu o innych wymiarach nie stanowi, oczywiście, większego problemu. Co ciekawe, ten sam zespół wytworzył nieco wcześniej dołki tak małe, że możliwe było ich wykorzystywanie do przechowywania... pojedynczych atomów. Zasada działania peryskopu jest niezwykle prosta. Część światła padającego na komórkę odbija się od jej boków, a następnie, po uprzednim odbiciu się od ścianek "piramidki", trafia do oka obserwatora. Można w ten sposób nie tylko oglądać badany obiekt z wielu stron, lecz także precyzyjnie ustalić jego pozycję w przestrzeni, jeżeli jest to np. komórka pływająca w roztworze. Pierwsze doświadczenia z mikroskopijnymi "piramidkami" pokazały, że umożliwiają one obserwację w czasie rzeczywistym nawet pojedynczych komórek pierwotniaków. Bez trudu można było zauważyć, jak pływają i dzielą się, dostrzeżono także liczne zmiany zachodzące we wnętrzu komórek. Wynalazek wydaje się oczywisty, lecz, choć trudno w to uwierzyć, nikt dotychczas nie opracował podobnego urządzenia. Korzyść z jego opracowania jest tymczasem ogromna, gdyż jego stosowanie umożliwia rezygnację ze standardowych metod mikroskopii trójwymiarowej, wymuszających stosowanie niezwykle drogiego sprzętu oraz złożonego oprogramowania komputerowego. Jak szacuje Ron Reiserer, jeden z badaczy biorących udział w projekcie, opracowane szkiełka z łatwością mogą stać się tak samo powszechne, jak zwykłe szkiełka mikroskopowe, i całkowicie wyeliminować kosztowne metody stosowane obecnie do ustalania pozycji pojedynczych komórek.
- 6 odpowiedzi
-
- optyka
- trójwymiarowy
-
(i 4 więcej)
Oznaczone tagami:
-
Naukowcy pracujący w szwajcarskim oddziale IBM-a w Zurychu stworzyli oprogramowanie pozwalające na uzyskanie trójwymiarowych awatarów pacjentów. Dane z tradycyjnych kartotek medycznych przechowywanych w formie cyfrowej są powiązane z trójwymiarową wirtualną postacią. ASME (Anatomic and Symbolic Mapper Engine) pozwala medykowi kliknąć myszką na wybranej części ciała awatara i zdobyć potrzebne informacje. To jak Google Earth, ale dla ciała. Mając nadzieję na przyspieszenie zwrotu w kierunku elektronicznego zapisu danych medycznych, chcieliśmy sprawić, by były one łatwo osiągalne dla pracowników służby zdrowia. Dlatego połączyliśmy dane medyczne z reprezentacją wizualną. Wyszliśmy z założenia, że jak najprostszy sposób manipulowania nimi może poprawić jakość opieki nad pacjentem - wyjaśnia nadzorujący przebieg projektu Andre Elisseeff. Lekarz, przeglądając konkretny obszar ciała pacjenta, będzie jednocześnie widział wszelkie wyniki badań (w tym zdjęcia wykonane różnymi technikami obrazowania medycznego). ASME korzysta również z SNOMEDU, usystematyzowanego słownika terminologii medycznej, który zawiera około 300 000 pojęć. Znakomicie poprawia on interakcje i łączy dane tradycyjne z obrazem 3D. Teraz naukowcy pracują nad zaimplementowaniem w ASME technologii mowy.
- 5 odpowiedzi
-
- trójwymiarowy
- awatar
-
(i 5 więcej)
Oznaczone tagami: