Znajdź zawartość
Wyświetlanie wyników dla tagów 'pozytron' .
Znaleziono 4 wyniki
-
Grupa naukowców współpracuje z NASA w celu stworzenia nowego typu silnika, który wykorzystywałby antymaterię. Jeśli taka konstrukcja powstanie, lot na Marsa będzie wymagał zużycia kilku miligramów paliwa. Wysłanie pierwszego człowieka na Księżyc rozbudziło nadzieję, że już wkrótce ludzie będą podróżowali na inne planety. Obecnie, 40 lat to tamtym wydarzeniu, wysłanie człowieka na Marsa jest wciąż odległą perspektywą. Do przezwyciężenia pozostało wiele problemów finansowych i technicznych. Jednym z nich jest napęd statku kosmicznego. Użycie tradycyjnego chemicznego paliwa do takiej misji jest mało praktyczne, ponieważ pojazd kosmiczny musiałby zabrać ze sobą olbrzymie ilości takiego środka napędowego, a to znacząco zwiększy jego masę i koszty samej ekspedycji. Z tego też powodu rozważane jest wykorzystanie silnika działającego dzięki reakcjom atomowym. Taka możliwość rozważana była już od lat 60. ubiegłego wieku w ramach programu Nuclear Engine for Rocket Vehicle Application (NERVA), jednak w 1972 roku zrezygnowano z tego pomysłu. Ponownie wzięto go pod uwagę w roku 2003, gdy narodził się Projekt Prometeusz. Wydaje się, że napęd atomowy jest najbardziej prawdopodobną opcją, która zostanie wykorzystana podczas marsjańskiej misji. Ma on jednak poważną wadę, którą jest duża radioaktywność. Z tego też powodu doktor Gerald A. Smith, założyciel firmy Positronics Research, kieruje pracami zespołu z NASA Institute for Advanced Concepts (NIAC), którego zadaniem jest stworzenie silnika wykorzystującego antymaterię. Takie silniki są dobrze znane z literatury czy filmów science-fiction. Antymateria jest bowiem najpotężniejszym znanym nam paliwem. Tym co czyni ją tak potężną jest fakt, że w reakcji z materią cała zamienia się na energię. Dla porównania: jedynie około 3% ładunku bomby atomowej jest zamieniane w energię. Doktor Smith informuje, że 10 miligramów pozytronów dostarczy pojazdowi 23 razy więcej energii, niż całe paliwo, zabierane obecnie przez promy kosmiczne. Antymateria ma jednak swoje minusy. Niektóre reakcje z jej wykorzystaniem prowadzą do powstania promieniowania gamma, które jest niebezpieczne dla organizmów żywych. Ponadto może ono doprowadzić, poprzez reakcję z materiałami, z których zbudowany jest silnik, do tego, iż urządzenie to stanie się radioaktywne. Amerykańscy uczeni próbują stworzyć napęd, który byłby pozbawiony takich "skutków ubocznych”. Chcą tego dokonać dzięki obniżeniu energii promieni gamma. Początkowo rozważano wykorzystanie jako paliwa protonów. Obecnie naukowcy mają zamiar użyć pozytronów, ponieważ powstające z nich promienie gamma mają około 400-krotnie mniej energii. Energię z antymaterii można uzyskać podczas jej reakcji z materią. Po spotkaniu pozytronów (czyli antyelektronów) z elektronami, dochodzi do anihilacji obu cząstek i wytwarzane jest ciepło. Pomysł naukowców polega na tym, by ze specjalnego pojemnika dostarczać pozytrony do reaktora, gdzie dochodziłoby do reakcji z materią i uwolnienia ciepła. Byłoby ono odbierane przez krążący w reaktorze ciekły wodór. Ten z kolei przepływałby do dysz, z których byłby wyrzucany na zewnątrz, nadając pojazdowi przyspieszenie. W porównaniu do napędu atomowego, taki silnik byłby znacznie prostszy w konstrukcji i bezpieczniejszy w użyciu. NIAC zaproponował obecnie NASA trzy modele silników: 1. z rdzeniem stałym – energia przekazywana jest do paliwa umieszczonego w matrycy z wolframu, który podgrzewa się anihilując promieniowanie gamma. Jego zaletą jest fakt, iż mamy tu do czynienia z dobrze znaną technologią. Wadą natomiast – ograniczenie efektywności działania, gdyż wolframu nie można oczywiście podgrzać powyżej temperatury jego topnienia. 2. z rdzeniem gazowym – energia przekazywana jest bezpośrednio do gazowego lub płynnego paliwa, które podgrzewa się anihilując promienie gamma. Zaleta takiego rozwiązania to brak limitu spowodowanego temperaturą topnienia. Wadą zaś możliwość zamienienia się takiego paliwa w plazmę. 3. z ablacją ciała stałego – energia jest przekazywana do materiału, którym pokryty jest "tłok” silnika i zużywa go stopniowo do napędzania pojazdu. Wśród zalet tej propozycji uczeni wymieniają prostotę konstrukcji i brak ograniczeń technologicznych. Wśród wad – fakt, iż połowa promieni gamma nie trafia w „tłok”, więc maksymalna efektywność całego systemu wynosi 50 procent. Pewnym ograniczeniem jest również tempo produkcji pozytronów. Obecnie jest ono zbyt wolne. Doktor Smith mówi, że gdyby udało je się przyspieszyć stukrotnie, to potrzebne do marsjańskiej misji 10 miligramów paliwa powstałoby w ciągu trzech lat. Koszt jego produkcji to 250 milionów dolarów. Do tego należy doliczyć 1,5 miliarda USD na odpowiedni akcelerator, w którym powstawałoby paliwo. Zdaniem Smitha potrzebna ilość paliwa pozytronowego mogłaby powstać w ciągu 5-10 lat. Uczeni zdążyliby więc z nim na czas, ponieważ USA planują rozpoczęcie misji na Marsa około roku 2030.
- 1 odpowiedź
-
- pozytron
- Positronic Research
-
(i 6 więcej)
Oznaczone tagami:
-
Należący do NASA Fermi Gamma-ray Space Telescope zaobserwował strumienie antymaterii, które powstają ponad ziemskimi burzami. Nigdy wcześniej nie widziano podobnego zjawiska. Naukowcy sądzą, że cząstki antymaterii powstają podczas ziemskich rozbłysków gamma (TGF), które obserwowano podczas burz i łączy się je z błyskawicami. Oblicza się, że codziennie na Ziemi dochodzi do około 500 przypadków TGF. Te sygnały to pierwszy bezpośredni dowód na powstawanie antymaterii podczas burz - mówi Michael Briggs z zespołu Fermi's Gamma-ray Burst Monitor na University of Alabama. Fermi, którego zadaniem jest obserwacja promieni gamma, zaobserwował wysoko energetyczne elektrony oraz pozytrony, czyli ich odpowiednik w antymaterii. Gdy elektron spotyka się z pozytronem dochodzi do anihilacji obu cząsteczek i rozbłysku gamma. GBM wykrył promienie gamma o energii 511 000 elektronowoltów, co wskazuje, że jego źródłem jest anihilacja cząsteczki i antycząsteczki. Do odkrycia antymaterii doszło przypadkiem. Fermi GBM ma za zadanie monitorowanie ziemskich rozbłysków gamma i ma w tym zakresie spore osiągnięcia. Operatorzy urządzenia starają się umieszczać je nad burzami. Jednak nie zawsze się to udaje. Tak było 14 grudnia 2009 roku, gdy Fermi znajdował się nad Egiptem, a burza miała miejsce nad położoną 4500 kilometrów dalej Zambią. Nawet mimo tego, że Fermi nie widział burzy, to był z nią magnetycznie połączony. TGF wytworzyło wysokoenergetyczne elektrony i pozytrony, które przeniosły się wzdłuż linii pola magnetycznego i trafiły w Fermi - mówi Joseph Dwyer z Florida Institute of Technology. Strumień cząstek przeszedł przez Fermi, dotarły do tzw. punktu lustrzanego, gdzie jego ruch został odwrócony i 23 milisekundy później ponownie dotarł do urządzenia. Wówczas za każdym razem, gdy pozytron z powracającego strumienia uderzył w elektron przechodzący po raz pierwszy przez urządzenie, dochodziło do anihilacji i rozbłysku gamma rejestrowanego przez GBM.
-
- Fermi Gamma-ray Space Telescope
- elektron
-
(i 4 więcej)
Oznaczone tagami:
-
Fizycy z CERN-u schłodzili antymaterię do najniższej osiągniętej dotychczas temperatury. Zespół naukowców obniżył temperaturę antyprotonów do 9,26 kelwina, jest ona zatem niższa niż temperatura Plutona. Badania pomogą wyjaśnić, dlaczego wszechświat zbudowany jest z materii, a nie antymaterii. Aby zbadać to zjawisko uczeni będą musieli połączyć antyprotony z pozytronami, uzyskując w ten sposób antywodór. Dzięki utrzymywaniu schłodzonego antywodoru w pułapkach magnetycznych będą mogli studiować zachowanie antymaterii. Jak zauważył Jeff Hangst, rzecznik prasowy zespołu badającego antymaterię w niskich temperaturach, wodór jest jednym z najczęściej badanych systemów fizycznych. Uczeni z CERN-u chcieliby z taką samą uwagą zbadać antywodór. Poprzedni rekord schłodzenia antymaterii należał do zespołu z Uniwersytetu Harvarda, który w 1989 roku obniżył temperaturę antyprotonów do 104,3 kelwina.
- 6 odpowiedzi
-
Zebrani w Pekinie fizycy poinformowali o zamiarach zbudowania urządzenia, które wyznaczy kolejny przełom w historii fizyki. Mowa tutaj o długim na 32 kilometry akceleratorze cząstek, w którym będzie dochodziło do zderzeń elektronów z pozytronami. W ich wyniku będzie można odtworzyć warunki, jakie panowały w momencie Wielkiego Wybuchu. Koszt budowy urządzenia oceniono na 6,7 miliarda dolarów. W prace projektowe zaangażowanych jest 60 naukowców z całego świata. Koncepcja akceleratora jest już opracowana, a uczeni zastanawiają się, w jaki sposób obniżyć koszty jego budowy. Warto zwrócić uwagę na miejsce ogłoszenia zamiarów wybudowania akceleratora – Instytut Fizyki Wysokich Energii w Pekinie. Oznacza to, że po dziesiątkach lat dominacji na tym polu USA i Europy, na scenę wkracza Azja. Badaniami takimi zainteresowane są przede wszystkim Chiny i Japonia. Początkowo Międzynarodowy Zderzacz Liniowy będzie miał długość 32 kilometrów, a przyspieszane elektrony nabywałyby energię rzędu 500 miliardów elektronowoltów. Później może zostać wydłużony do 50 kilometrów, a energia elektronów zwiększyłaby się do biliona elektronowoltów. Międzynarodowy Zderzacz Liniowy (ILC) stanowiłby uzupełnienie Wielkiego Zderzacza Hadronów (LHC), który powstanie pod Genewą. LHC, gdy pod koniec bieżącego roku rozpocznie pracę, będzie najpotężniejszym tego typu urządzeniem na świecie. Wykorzystywane w nim wiązki protonów będą miały energię rzędu 7 bilionów elektronowoltów, a fizycy mają nadzieję, że LHC pozwoli im udowodnić istnienie tzw. bozonów Higgsa. Wydawałoby się, że powstanie LHC uczyni zbędnym budowanie Międzynarodowego Zderzacza Liniowego. Nic bardziej błędnego. LHC wykorzystuje protony, które składają się z mniejszych elementów: kwarków i gluonów. Informacje uzyskane ze zderzeń protonów są mocno zakłócone przez te liczne i różniące się od siebie cząstki. ILC posłużyłby do dokładniejszego sprawdzania danych i teorii powstałych dzięki pracy LHC. Wykorzystywane w nim elektrony i pozytrony są bowiem "czystymi” cząstkami, więc informacje nie będą zakłócane. Głównym problemem pozostaje finansowanie budowy Międzynarodowego Zderzacza Liniowego. Z tego też powodu najprawdopodobniej do rozpoczęcia jego budowy dzielą nas całe lata. Uczeni określili już trzy miejsca, w których mógłby zostać zbudowany. Są to okolice instytutu CERN pod Genewą, laboratorium im. Fermiego w Batavii w stanie Illinois oraz góry Japonii.
-
- Międzynarodowy Zderzacz Liniowy
- Wielki Zderzacz Hadronów
- (i 10 więcej)