Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'kwark t' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Na zakończonej przed dwoma dniami Recontres de Moriond, organizowanej od 1966 roku dorocznej konferencji, podczas której omawiane są najnowsze osiągnięcia fizyki, naukowcy CERN-u poinformowali o zaobserwowaniu jednoczesnego powstania czterech kwarków wysokich (kwarków t). To rzadkie wydarzenie zarejestrowały zespoły pracujący przy eksperymentach ATLAS i CMS, a może ono pozwolić na badanie zjawisk fizycznych wykraczających poza Model Standardowy. Co niezwykle ważne, obserwacje dokonane zarówno przez ATLAS jak i CMS przekraczają statystyczny poziom ufności 5σ, przy którym można mówić o dokonaniu odkrycia. W przypadku ATLAS poziom ten wyniósł 6.1σ, a w przypadku CMS – 5.5σ. Kwark wysoki to najbardziej masywna cząstka Modelu Standardowego, a to oznacza, że jest najsilniej powiązana z bozonem Higgsa. Dzięki temu kwarki t to najlepsze cząstki mogące posłużyć do badania fizyki poza Modelem Standardowym. Najczęściej kwarki t obserwowane są w parach z odpowiadającym im antykwarkiem. Czasem powstają samodzielnie. Według Modelu Standardowego istnieje możliwość jednoczesnego powstania czterech kwarków wysokich czyli dwóch par składających się z kwarka i antykwarka. Jednak prawdopodobieństwo takiego zdarzenia jest 70 tysięcy razy mniejsze niż prawdopodobieństwo powstania pary kwark-antykwark. Zatem uchwycenie czterech kwarków t jest niezwykle trudne. ATLAS już w roku 2020 i 2021 zarejestrował pewne sygnały sugerujące, że doszło do jednoczesnego powstania czterech kwarków t, a CMS wykrył taki sygnał w 2022 roku, jednak dotychczas poza pewnym wskazówkami, nigdy nie zdobyto pewności. Nie zarejestrowano takiego wydarzenia. Nie dość, że to rzadkie wydarzenie, jest ono trudne do zarejestrowania. Fizycy, rozglądając się za konkretnymi cząstkami, szukają ich sygnatur, czyli produktów rozpadu. Kwark t rozpada się na bozon W i kwark niski (kwark b), a bozon W rozpada się następnie albo na naładowany lepton i neutrino, albo na parę kwark-antykwark. A to oznacza, że sygnatura wydarzenia, w ramach którego jednocześnie powstały cztery kwarki t może zawierać od 0 do 4 naładowanych leptonów i do 12 dżetów powstających w wyniku hadronizacji kwarków. Znalezienie takiej sygnatury jest więc trudne. Na potrzeby badań naukowcy z ATLAS i CMS wykorzystali nowatorskie techniki maszynowego uczenia, dzięki którym algorytm wyłowił z olbrzymiej ilości danych te informacje, które mogły być sygnaturami powstania czterech kwarków t. Skoro się to udało, naukowcy mają nadzieję, że podczas obecnie trwającej kampanii badawczej – Run 3 – zarejestrowanych zostanie więcej tego typu zdarzeń. Run 3 potrwa, z przerwami, do końca 2025 roku. W grudniu 2025 Wielki Zderzacz Hadronów zostanie zamknięty, a przerwa potrwa aż do lutego 2029. « powrót do artykułu
  2. Analiza danych z Wielkiego Zderzacza Hadronów wskazuje, że w LHC powstają podwójne pary kwark t/antykwark t. Najnowsze odkrycie jest pierwszym krokiem w kierunku przetestowania prawdziwości hipotezy mówiącej, że podwójne pary kwarków t pojawiają się częściej niż wynika to z Modelu Standardowego. Kwarki t to najcięższe cząstki elementarne. Każdy z nich ma masę podobną do masy atomu wolframu. Jednocześnie, jako że kwarki t są znacznie mniejsze od protonu, oznacza to, iż są najgęstszą formą materii. Kwarki t powstały podczas Wielkiego Wybuchu, jednak błyskawicznie się rozpadły. Obecnie możemy je uzyskiwać i badać jedynie w akceleratorach cząstek. Pierwsze kwarki t zostały odkryte w 1995 roku w akceleratorze Tevatron w Fermilab. Tevatron był wówczas najpotężniejszym akceleratorem na świecie i można w nim było uzyskać parę kwark t/antykwark t raz na kilka dni. Tevatron – najbardziej zasłużony dla nauki akcelerator cząstek – został wyłączony w 2011 roku, po uruchomieniu Wielkiego Zderzacza Hadronów (LHC). LHC pracuje z 6,5-krotnie większymi energiami niż Tevatron, a do zderzeń dochodzi w nim około 100-krotnie częściej. Dzięki temu w urządzeniach ATLAS i CMS, będących częścią LHC, możliwe jest uzyskiwanie par kwark t/antykwark t co sekundę. Niedawno naukowcy analizowali dane z eksperymentu ATLAS, by sprawdzić, jak często powstają podwójne pary kwark t/antykwark t. Model Standardowy przewiduje, że powinny one powstawać około 70 000 razy rzadziej niż pojedyncze pary kwark t/antykwark t. Analizie poddano dane z eksperymentów ATLAS i CMS z lat 2015–2018. Okazało się, że w przypadku eksperymentu ATLAS pewność uzyskiwania tam podwójnych par kwarków t wynosi sigma 4.3, a w przypadku CMS jest to sigma 2.6. Dotychczas uważano, że w obu przypadkach wartość ta wynosi 2.6. Sigma to miara pewności statystycznej. Fizycy cząstek mówią o odkryciu, gdy wartość sigma wynosi 5 lub więcej. Oznacza to bowiem, że prawdopodobieństwo, iż mamy do czynienia z przypadkową fluktuacją, a nie z prawdziwą obserwacją, wynosi 1:3500000. Wartość sigma 3 oznacza, że prawdopodobieństwo wystąpienia przypadkowej fluktuacji wynosi 1:740. Wówczas mówi się o dowodzie, wymagającym dalszych potwierdzeń obserwacyjnych. Osiągnięcie wartości 4.6 oznacza, że jesteśmy bardzo blisko potwierdzenia, że w LHC powstają podwójne pary kwarków t. A gdy już zostanie to potwierdzone, można będzie sprawdzić, czy częstotliwość ich powstawania jest zgodna z Modelem Standardowym. « powrót do artykułu
×
×
  • Dodaj nową pozycję...