Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'kubit' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 15 wyników

  1. Komputery kwantowe mogą bazować na różnych rodzajach kubitów (bitów kwantowych). Jednym z nich są kubity z fotonów, które o palmę pierwszeństwa konkurują z innymi rozwiązaniami. Mają one sporo zalet, na przykład nie muszą być schładzane do temperatur kriogenicznych i są mniej podatne na zakłócenia zewnętrzne niż np. kubity bazujące na nadprzewodnictwie i uwięzionych jonach. Pary splątanych fotonów mogą stanowić podstawę informatyki kwantowej. Jednak uzyskanie splatanych fotonów wymaga zastosowania nieporęcznych laserów i długotrwałych procedur ich dostrajania. Niemiecko-holenderska grupa ekspertów poinformowała właśnie o stworzeniu pierwszego w historii źródła splątanych fotonów na chipie. Dokonany przez nas przełom pozwolił na zmniejszenie źródła ponad 1000-krotnie, dzięki czemu uzyskaliśmy powtarzalność, długoterminową stabilność, skalowalność oraz potencjalną możliwość masowej produkcji. To warunki, które muszą być spełnione, by zastosować tego typu rozwiązanie w realnym świecie kwantowych procesorów, mówi profesor Michael Kues, dyrektor Instytutu Fotoniki na Leibniz Universität Hannover. Dotychczas źródła światła dla komputerów kwantowych wymagały zastosowania zewnętrznych, nieporęcznych systemów laserowych, których użyteczność była ograniczona. Poradziliśmy sobie z tymi problemami tworząc nową architekturę i różne systemy integracji podzespołów na układzie scalonym, dodaje doktorant Hatam Mahmudlu z grupy Kuesa. Naukowcy mówią, że ich układ scalony jest równie łatwy w użyciu, jak każdy innych chip. Żeby rozpocząć generowanie splątanych fotonów wystarczy układ zamontować i włączyć. Jak każdy inny układ scalony. Jego obsługa nie wymaga żadnego specjalnego doświadczenia. Zdaniem twórców układu, w przyszłości takie źródło może znaleźć się w każdym kwantowym procesorze optycznym. Dotychczas eksperci mieli olbrzymie problemy w zintegrowaniu na jednym chipie laserów, filtra i wnęki, gdyż nie istnieje żaden pojedynczy materiał, z którego można by stworzyć wszystkie te urządzenia. Rozwiązaniem okazało się podejście hybrydowe. Naukowcy na jednym chipie umieścili laser z fosforku indu, wnękę oraz filtr z azotku krzemu. W polu lasera, w wyniku spontanicznego nieliniowego procesu, dochodzi do powstania dwóch splątanych fotonów. Uzyskaliśmy wydajność i jakość wymaganą do zastosowania naszego chipa w kwantowych komputerach czy kwantowym internecie, zapewnia Kues. Nasze źródło światła wkrótce stanie się podstawowym elementem programowalnych fotonicznych procesorów kwantowych, uważa uczony. Szczegóły badań zostały opublikowane w Nature Photonics. « powrót do artykułu
  2. Wiele współczesnych komputerów kwantowych zapisuje informacje w nietrwałych stanach kwantowych, które bardzo trudno jest utrzymać i skalować. Rozwiązaniem problemu może być trwały nanomechaniczny kubit. Kwantowe bity zbudowane z wibrujących węglowych nanorurek i par kropek kwantowych mogą być bardzo odporne na zakłócenia zewnętrzne. Tak przynajmniej wynika z obliczeń wykonanych przez Fabio Pistolesiego z francuskiego Narodowego Centrum Badań Naukowych i jego kolegów z Hiszpanii i USA. Obliczenia wskazują bowiem, że czas dekoherencji takiego nanomechanicznego kubitu były bardzo długi, co czyni tę architekturę obiecującym elementem komputerów kwantowych. Komputery kwantowe mogą, przynajmniej teoretycznie, dokonywać wielu obliczeń znacznie szybciej niż maszyny klasyczne. Wynika to z samych zasad fizyki kwantowej. Najmniejszą jednostką informacji, jaką posługują się komputery, jest bit, reprezentowany przez cyfrę „0” lub „1”. W 4 bitach możemy zapisać 16 (24) kombinacji zer i jedynek. W komputerze klasycznym w danym momencie możemy zapisać jedną z tych kombinacji – gdyż każdy z bitów może przyjąć pozycję albo „0” albo „1” – i wykonać na niej działania. Jednak komputery kwantowe nie korzystają z bitów, a z kubitów (bitów kwantowych). Kubitem może być np. elektron. A z praw mechaniki kwantowej wiemy, że nie ma on jednej ustalonej wartości „0” lub „1”, ale przyjmuje obie jednocześnie. To tzw. superpozycja. Zatem w komputerze kwantowym w danym momencie zapiszemy wszystkie 16 kombinacji i wykonamy na nich działania. Innymi słowy, 4-bitowy komputer kwantowy powinien być – przynajmniej w teorii – aż 16-krotnie szybszy od swojego klasycznego odpowiednika. Obecnie zaś korzystamy z procesorów 64-bitowych, więc liczba możliwych kombinacji zer i jedynek wynosi w ich przypadku 264. Problem jednak w tym, że stany kwantowe są bardzo nietrwałe i w wyniku interakcji z czynnikami zewnętrznymi kubit może ulec dekoherencji, czyli utracić swój stan kwantowy (superpozycję) i stać się „standardową” jedynką albo zerem. Widzimy więc, jak istotny jest czas dekoherencji. Im jest on dłuższy, tym więcej czasu zostaje na przeprowadzenie obliczeń. Obiecującymi kandydatami na kubity są obwody nadprzewodzące, jony uwięzione w pułapkach magnetycznych czy kropki kwantowe. Teraz międzynarodowa grupa uczonych przekonuje, że możliwe jest też zbudowanie stabilnego nanomechanicznego kubitu. Kubit taki miały się składać z wiszącej węglowej nanorurki działającej jak rezonator, której wibracje zależą od stanów elektronicznych dwóch kropek kwantowych znajdujących się w samej nanorurce. Sprzężenie pomiędzy kropkami a nanorurką powoduje, że rezonator staje się silnie anharmoniczny. To oznacza, że okres drgań jest zależny od jego amplitudy. W takim rezonatorze bardzo łatwo wykryć nawet najmniejsze zmiany amplitudy. Pistolesi uważa, że właśnie amplitudę można wykorzystać do przechowywania kwantowej informacji. Innymi słowy, najmniejsza możliwa amplituda drgań (kwantowy stan podstawowy) odpowiada „0”, a kolejna najmniejsza amplituda (pierwszy stan wzbudzenia) odpowiada „1”. Stany te można z łatwością odczytać za pomocą mikrofal. Fakt, że częstotliwość pracy oscylatora zmienia się, gdy zmienia się jego amplituda, pozwala nam na odczytywanie kubitu i manipulowanie nim, wyjaśnia swoją koncepcję Pistolesi. Uczony przekonuje, że taki kubit byłby bardzo trwały. Zanim pojawi się dekoherencja, dojdzie w nim do milionów oscylacji. Wyniki badań, chociaż obiecujące, nie rozwiązują wszystkich problemów. Naukowcy wciąż nie wiedzą, w jaki sposób wprowadzić do takiego systemu na tyle silną anharmoniczność, by całość poddawała się kontroli. Być może zaproponowana przez Pistolesiego architektura nigdy nie trafi do komputerów kwantowych. Jednak może się ona przydać do budowy niezwykle czułych detektorów kwantowych, gdyż oscylatory takie byłyby podatne na działanie klasycznych sił. Można by je więc wykorzystać do wykrywania niewielkich zmian przyspieszenia, pola elektrycznego czy magnetycznego. Teraz badacze chcą zbudować zaproponowany przez siebie kubit i przetestować jego działanie. « powrót do artykułu
  3. Holenderscy uczeni zaprezentowali elektroniczny kontroler kubitów, pracujący w temperaturach kriogenicznych. Urządzenie może pomóc w poradzeniu sobie z problemem wąskiego gardła połączeń w komputerach kwantowych korzystających z wielu kubitów. Do budowy komputerów kwantowych wykorzystuje się obecnie wiele różnych technologii. Wiele z nich zmaga się z poważnym problemem. Otóż elementy, w których przeprowadzane są obliczenia kwantowe pracują w bardzo niskich temperaturach, tymczasem kable i inne podzespoły łączące te elementy ze światem zewnętrznym mają temperaturę znacznie wyższą. Tak duża różnica temperatur może niekorzystnie wpływać na pracę komputerów kwantowych i możliwości ich projektowania. Naukowcy z Uniwersytetu Technologicznego w Delft we współpracy z ekspertami Intela zaprezentowali właśnie urządzenie elektroniczne, które pracuje w temperaturach kriogenicznych i może kontrolować kwantowy układ scalony. Kriokontroler Horse Ridge pracuje z kwantowymi układami scalonymi opartymi na krzemie równie dobrze, jak standardowe kontrolery z układami scalonymi działającymi w temperaturze pokojowej. Obecnie w procesorach kwantowych dla każdego kubita tworzy się osobne okablowanie, które łączą go z zewnętrznymi urządzeniami pracującymi w temperaturze pokojowej, wyjaśnia fizyk Lieven Vandersypen z TU Delft. Jednak w przyszłości, gdy kwantowe procesory będą korzystały z tysięcy lub milionów kubitów, zapewnienie każdemu kubitowi osobnego okablowanie nie będzie możliwe, dodaje uczony. Dlatego też wraz z zespołem pracuje nad rozwiązaniem, które poradzi sobie zarówno z problemem różnicy temperatur jak i okablowania. Problem integracji kubitów i elektroniki to problem termiczny, zgadza się Sorin Voinigescu, inżynier z University of Toronto, który nie był zaangażowany w opisywane badania. Kontrolery mikrofalowe, takie jak Horse Ridge, mają poważne problemy z pracą w niskich temperaturach. A w przyszłości, gdy będziemy dysponowali kwantowymi procesorami zawierającymi miliony kubitów, konieczne będzie upakowanie w nich dziesiątków tysięcy takich kontrolerów, zdolnych do pracy w bardzo niskich temperaturach. Nowe badania to kolejny krok w tym kierunku. Podczas prowadzonych eksperymentów Horse Ridge kontrolował parę kubitów zamkniętych w krzemowym systemie zwanym podwójną kropką kwantową. Kontroler wysyłał zaprogramowane wcześniej krótkie impulsy mikrofalowe, które pozwalały na manipulowanie spinem kubitów, czyli przeprowadzanie obliczeń. Zwykle tego typu kontrolery pracują w temperaturze pokojowej i są połączone z procesorem kwantowym za pomocą kabla koncentrycznego. Horse Ridge pracuje w temperaturach kriogenicznych, a jego wydajność jest taka sama, jak tradycyjnych kontrolerów. Horse Ridge powstał w dobrze znanej technologii CMOS. Połączenie 60 lat doświadczeń z CMOS z kubitami to zwycięskie rozwiązanie, mówi Edoardo Charbon z Delft. Holenderski zespół zapewnia, że technologię CMOS nie tylko można łatwo miniaturyzować i integrować z kwantowymi układami scalonymi, ale Horse Ridge może być programowany tak, by w różny sposób manipulował kubitami. Pozwala też na uruchamianie większej liczby algorytmów kwantowych, niż wcześniejsze kriokontrolery. Kontroler pracuje w niskich temperaturach, jednak jest on cieplejszy niż procesor kwantowy, więc różnica między nim a wychodzącym na zewnątrz okablowaniem jest mniejsza. Holenderski zespół będzie pracował nad dalszym zwiększeniem temperatury kubitów, by móc zmniejszać te różnice. Szczegóły opisano na łamach Nature. « powrót do artykułu
  4. Po raz pierwszy w historii udało się przesłać splątane stany kwantowe przewodem łączącym dwa węzły. Specjaliści z Pritzker School of Molecular Engineering na University of Chicago jednocześnie wzmocnili stan kwantowy na tym samym przewodzie, najpierw wykorzystując przewód do splątania po jednym kubicie w każdym z węzłów, a następnie splątując te kubity z kolejnymi kubitami w węzłach. Opracowanie metod transferu stanów splątanych jest kluczowym elementem potrzebnym do skalowania kwantowych systemów komputerowych, mówi główny autor badań, profesor Andrew Cleland. Aby wysłać stan kwantowy naukowcy stworzyli w każdym z węzłów po trzy nadprzewodzące kubity. Następnie po jednym kubicie z każdego węzła połączyli z przewodem i wysłali stan kwantowy, w formie mikrofalowych fotonów. Dzięki temu, że cały proces trwał zaledwie kilkadziesiąt nanosekund, doszło jedynie do minimalnej utraty informacji. Taki system pozwolił im też na „wzmocnienie” splątania kubitów. Najpierw splątali ze sobą po jednym kubicie z obu węzłów, później rozszerzyli splątanie na kolejne kubity. Gdy skończyli, splątane były wszystkie kubity w obu węzłach, które utworzyły pojedynczy globalny stan splątany. W przyszłości komputery kwantowe mogą być zbudowane z modułów, w których obliczenia będą dokonywane przez grupy splątanych kubitów. Takie komputery mogą być stworzone z wielu połączonych węzłów. Podobnie zresztą jak dzisiaj buduje się superkomputery, które składa się z wielu węzłów obliczeniowych w jedną wydajną maszynę. Przesłanie stanu splątanego pomiędzy węzłami jest więc bardzo ważnym osiągnięciem na drodze do powstania takich modułowych komputerów kwantowych. Takie węzły muszą mieć możliwość przesyłania pomiędzy sobą złożonych stanów kwantowych, a nasza praca to ważny krok w tym kierunku, mówi Cleland i zaznacza, że z takiego podejścia mogą skorzystać też sieci kwantowe. Uczeni z Chicago mają nadzieję, że w przyszłości uda im się poszerzyć ich architekturę o kolejny węzeł i stworzą stan splątany z kubitów zgrupowanych w trzech modułach. Więcej na ten temat można przeczytać w Nature. « powrót do artykułu
  5. Naukowcy z Narodowego Instytutu Standardów i Technologii (NIST) informują o materiale, który może stać się „krzemem komputerów kwantowych”. Nowo odkryte właściwości ditellurku uranu (UTe2) wskazują, że może być on wyjątkowo odporny na jeden z największych problemów trapiących informatykę przyszłości, problem zachowania kwantowej koherencji. Stany kwantowe są niezwykle delikatne i ulegają zniszczeniu pod wpływem czynników zewnętrznych. Dotychczas nikomu nie udało się w sposób praktyczny do masowego zastosowania rozwiązać problemu istnienia kubitów (kwantowych bitów) na tyle długo, by można było przeprowadzić obliczenia zanim ich stany kwantowe ulegną zniszczeniu. Materiałem, który może pomóc w przezwyciężeniu tych problemów jest nadprzewodzący UTe2. Okazało się bowiem, że jest on niezwykle odporny na działanie zewnętrznego pola magnetycznego, co jest ewenementem wśród nadprzewodników. Nick Butch, fizyk z NIST mówi, że ta właściwość czyni go atrakcyjnym przedmiotem badań dla specjalistów rozwijających komputery kwantowe. To potencjalny krzem wieku informatyki kwantowej. Można by użyć ditellurku uranu do uzyskania kubitów w wydajnym komputerze kwantowym, stwierdza uczony. W zwykłych przewodnikach elektrony podróżują jako indywidualne cząstki. Jednak w nadprzewodnikach tworzą one pary Coopera, czyli oddziałujące ze sobą pary elektronów. Mają one połówkowe spiny skierowane w przeciwne strony i ich spin całkowity wynosi 0. To właśnie istnienie par Coopera zapewnia nadprzewodnictwo. Istnieje jednak niewielka liczba nadprzewodników, i UTe2 wydaje się do nich należeć, gdzie spin par Coopera może przyjmować nie jedną, a trzy różne konfiguracje, w tym i taką, gdzie spiny obu elektronów są równoległe, a spin całkowity przyjmuje wartość -1, 0 i +1. Wówczas mówimy o nadprzewodniku topologicznym. Wykazuje on dużą odporność na działania czynników zewnętrznych. Taki równoległy spin może podtrzymać działanie komputera. W tym przypadku nie dochodzi do spontanicznego zaniku stanu z powodu fluktuacji kwantowych, mówi Butch. Potrzebujemy topologicznych przewodników, gdyż mogą nam one zapewnić bezbłędnie działające kubity. Mogą mieć one bardzo długie czasy życie. Topologiczne nadprzewodniki to alternatywny sposób na zbudowanie komputera kwantowego, gdyż chronią one stany kwantowe przed wpływami zewnętrznymi, wyjaśnia Butch. Wraz ze swoim zespołem prowadził on badania nad magnesami bazującymi na uranie i zainteresował się bliżej ditellurkiem uranu. UTe2 został po raz pierwszy pozyskany w latach 70. XX wieku i nawet dość niedawne artykuły naukowe opisywały to jako nieciekawy materiał. My uzyskaliśmy go jako materiał uboczny podczas syntezy innego materiału. Postanowiliśmy go jednak zbadać, by sprawdzić, czy nie ma on jakichś właściwości, które inni przeoczyli. Szybko zdaliśmy sobie sprawę, że mamy w rękach coś specjalnego, mówi Butch. Szczegółowe badania wykazały, że UTe2 jest w bardzo niskich temperaturach nadprzewodnikiem, a jego właściwości nadprzewodzące przypominają te rzadkie nadprzewodniki, które są jednocześnie ferromagnetykami. Jednak UTe2 nie jest ferromagnetykiem. Już samo to czyni go wyjątkowym, stwierdza Butch. Okazało się też, że jest wyjątkowo odporny na zewnętrzne pole magnetyczne. Zwykle pole magnetyczne niszczy nadprzewodnictwo. Jednak okazało się, że UTe2 wykazuje właściwości nadprzewodzące w polu magnetycznym o natężeniu do 35 tesli. To wielokrotnie więcej niż wytrzymuje większość niskotemperaturowych nadprzewodników topologicznych. Mimo, że jeszcze nie zdobyto jednoznacznego dowodu, iż UTe2 jest nadprzewodnikiem topologicznym, Butch mówi, że jego niezwykła odporność na działanie pola magnetycznego wskazuje, że jest nadprzewodnikiem, w którym pary Coopera przyjmują różne wartości spinu. Zdaniem naukowców z NIST dalsze badania nad tym materiałem pozwolą nam lepiej zrozumieć jego właściwości oraz, być może, samo zjawisko nadprzewodnictwa. Może zrozumiemy, co stabilizuje tego typu nadprzewodniki. Głównym celem prac nad nadprzewodnikami jest bowiem zrozumienie tego zjawiska na tyle, byśmy wiedzieli, gdzie szukać materiałów nadprzewodzących. Teraz tego nie potrafimy. Nie wiemy, co jest ich główną cechą. Mamy nadzieję, że ten materiał nam to zdradzi, dodaje Butch. « powrót do artykułu
  6. Fizycy z Chińskiego Uniwersytetu Nauki i Technologii poinformowali o splątaniu 18 kubitów. To największa jak dotychczas liczba splątanych kubitów z zachowaniem kontroli nad pojedynczym kubitem. Jako, że każdy z kubitów może reprezentować 2 stany, możemy w tym przypadku uzyskać 262 144 kombinacje ich stanów (218). Artykuł opisujący osiągnięcie Xi-Lin Wanga i jego kolegów został opublikowany na łamach Physical Review Letters. W artykule informujemy o splątaniu 18 kubitów, co rozszerza efektywną przestrzeń Hilberta do 262 144 wymiarów z pełną kontrolą o trzech stopniach swobody dla sześciu fotonów, w tym z kontrolą ich polaryzacji, orbitalnego momentu pędu oraz drogi, stwierdził współautor badań Chao-Yang Lu. To największa jak dotąd liczba splątanych kubitów. Splątywanie coraz większej liczby kubitów interesuje nie tylko specjalistów zajmujących się badaniami podstawowymi. Stanowi to jedno z głównych wyzwań informatyki kwantowej. Istnieją dwa sposoby na splątanie większej liczby kubitów. Można albo dodawać kolejne cząstki do już splątanych, albo wykorzystywać dodatkowe stopnie swobody splątanych cząstek. Gdy korzystamy z dodatkowych stopni swobody mówimy o hipersplątaniu. Jak dotychczas największymi osiągnięciami na tym polu było splątanie 14 jonów z jednym stopniem swobody oraz pięciu fotonów z dwoma stopniami swobody, co odpowiada 10 kubitom. Mimo, że przejście od dwóch do trzech stopni swobody stanowi poważne wyzwanie, chińskim naukowcom udało się uzyskać nie tylko trzy stopnie swobody, ale i zwiększyć liczbę fotonów do sześciu, przez co uzyskali 18 splątanych kubitów. Użycie dodatkowych stopni swobody niesie ze sobą liczne korzyści. Na przykład zwiększenie z dwóch do trzech stopni swobody oznacza, że każdy foton może znajdować się nie w czterech, a w ośmiu różnych stanach. Ponadto hipersplątany 18-kkubitowy stan z trzema stopniami swobody jest o 13 rzędów wielkości bardziej efektywny niż  18-kubitowy stan składający się z 18 fotonów o pojedynczym stopniu swobody. Dzięki naszej pracy uzyskaliśmy nową platformę do optycznego przetwarzania informacji kwantowej. Możliwość kontrolowania 18 kubitów pozwala nam na przeprowadzenie niedostępnych dotychczas badań, takich jak na przykład wykorzystanie kodu Raussendorfa-Harringtona-Goyala do korekcji błędów czy teleportacji trzech stopni swobody pojedynczego fotonu, mówi Lu. « powrót do artykułu
  7. Podczas odbywającego się właśnie dorocznego spotkania Amerykańskiego Towarzystwa Fizycznego specjaliści z IBM-a poinformowali o dokonaniu trzech przełomowych kroków, dzięki którym zbudowanie komputera kwantowego stanie się możliwe jeszcze za naszego życia. Jednym z najważniejszych wyzwań stojących przed ekspertami zajmującymi się kwantowymi komputerami jest dekoherencja. To wywołana oddziaływaniem czynników zewnętrznych utrata właściwości kwantowych przez kubity - kwantowe bity. Koherencja wprowadza błędy do obliczeń kwantowych. Jednak jeśli udałoby się utrzymać kwantowe bity przez wystarczająco długi czas można by przeprowadzić korektę błędów. Eksperci z IBM-a eksperymentowali ostatnio z „trójwymiarowymi“ nadprzewodzącymi kubitami, które zostały opracowane na Yale University. Ich prace pozwoliły na dokonanie przełomu. Udało się im utrzymać stan kwantowy kubitu przez 100 mikrosekund. To 2 do 4 razy więcej niż poprzednie rekordy. A co najważniejsze, to na tyle długo by przeprowadzić korekcję błędów na kubitach 3D. Drugi z przełomowych kroków to powstrzymanie dekoherencji zwykłego „dwuwymiarowego“ kubitu przez 10 mikrosekund. W przypadku takich kubitów wystarczy to do przeprowadzenia korekcji błędów. Utrzymanie przez tak długi czas kubitu pozwoliło na dokonanie trzeciego z przełomów. Udało się bowiem przeprowadzić na dwóch kubitach operację CNOT (controlled-NOT) z dokładnością 95-98 procent. To niezwykle ważne osiągnięcie, gdyż bramka CNOT w połączeniu z prostszymi bramkami kubitowymi może być skonfigurowana do przeprowadzenia dowolnej operacji logicznej. Od połowy 2009 roku IBM udoskonalił wiele technik związanych z komputerami kwantowymi. Najprzeróżniejsze aspekty związane z takimi maszynami udoskonalono od 100 do 1000 razy. W sumie wszystkie te techniki są bardzo bliskie spełnienia minimalnych wymagań stawianych przed praktycznym komputerem kwantowym.
  8. Na University of California, Santa Barbara, powstał pierwszy komputer kwantowy, w którym połączono procesor z pamięcią. Odtworzono zatem, tym razem jednak w maszynie kwantowej, architekturę von Neumanna. Był to pierwszy rodzaj architektury komputera (jego autorami, obok von Neumanna byli John Mauchly i John Eckert). Jej najważniejszą cechą było przechowywanie danych wraz z instrukcjami. Zanim powstała architektura von Neumanna przeprogramowywanie komputerów mogło się odbywać jedynie poprzez ich fizyczną rekonfigurację. Pojawienie się pierwszego w pełni funkcjonalnego komputera kwantowego jest wciąż bardzo odległe w czasie, jednak połączenie procesora i pamięci to ważny krok w stworzeniu kwantowej maszyny. Dzięki temu programowanie i kontrolowanie komputera staje się znacznie prostsze. Obecnie jedynym dostępnym komercyjnie urządzeniem, które do obliczeń wykorzystuje zjawiska kwantowe, jest komputer firmy D-Wave. Jego architektura przypomina jednak rozwiązania sprzed epoki pojawienia się architektury von Neumanna. Jedyny egzemplarz komputera D-Wave kupił ponoć Lockheed Martin. Każdy obecnie używany komputer bazuje na architekturze von Neumanna, a my stworzyliśmy jej kwantowy odpowiednik - mówi Matteo Mariantoni, główny autor badań. Komputer z Uniwersytetu Kalifornijskiego korzysta z obwodów elektrycznych, które są schładzane do temperatury bliskiej zeru absolutnemu. Wówczas działają jak nadprzewodniki i zachodzą w nich zjawiska kwantowe. Mariantoni mówi, że wykorzystano układy, które mogą być tworzone za pomocy współczesnych technik używanych w przemyśle półprzewodnikowym, a dzięki nadprzewodzącym obwodom możliwe było umieszczenie procesora i pamięci na jednym układzie i uzyskanie architektury von Neumanna. Wspomniany komputer to maszyna wykorzystująca dwa kubity (kwantowe bity), które komunikują się za pomocą kwantowej szyny. Każdy z kubitów jest też połączony z układem pamięci, w którym może zapisać swój obecny stan w celu jego późniejszego wykorzystania. Pamięć działa zatem tak, jak układ RAM w tradycyjnym komputerze. Kubity łączą się z pamięcią za pośrednictwem obwodów zwanych rezonatorami, które przez krótki czas mogą przechowywać stan kubitu. W kwantowej architekturze von Neumanna uruchomiliśmy kwantową transformację Fouriera oraz trzykubitową bramkę Toffoliego - kluczowe kwantowe obwody logiczne, które posłużą nam do dalszych prac nad kwantowym komptuerem - mówi Mariantoni.
  9. Naukowcy z University of Southern California pokazali, w jaki sposób można poradzić sobie z jednym z najpoważniejszych przeszkód, z jakimi zmagają się specjaliści pracujący nad komputerami kwantowymi. Zespół profesora Susumu Takahashiego znacząco obniżył ryzyko pojawienia się dekoherencji. W komputerach kwantowych dane będą zapisywane w postaci kubitów i będą korzystały z praw mechaniki kwantowej. Z praw tych wiemy, że nośnik informacji nie będzie miał ustalonej wartości „0„ lub „1„ jak ma to miejsce w tradycyjnych komputerach. Będzie on przyjmował obie wartości jednocześnie. Obecnie np. w trzech bitach, z których każdy może przyjąć wartość „0„ lub „1„ możemy zapisać 8 różnych kombinacji, jednak w danym momencie zapiszemy tylko jedną z nich i na jednej wykonamy działania. W kubitach możemy zapisać jednocześnie wszystkie 8 kombinacji i jednocześnie wykonać na nich działania. Niestety, poważnym problemem jest fakt, że stany kwantowe są bardzo nietrwałe. Pod wpływem oddziaływania z czynnikami zewnętrznymi kubity tracą stany kwantowe i stają się „zwykłymi" bitami. Już wcześniej uczeni z University of British Columbia, biorąc pod uwagę wszystkie potencjalne źródła dekoherencji, przedstawili je jako funkcję temperatury, pola magnetycznego i stężenia izotopów i wyliczyli, że idealnymi warunkami dla pracy z kubitami są takie, w których uda się 1000-krotnie obniżyć oddziaływanie czynników dekoherencji. Czynniki dekoherencji możemy podzielić na dwie grupy. Jedna z nich to te, które są częściami samego systemu kubitów, a druga to czynniki zewnętrzne, pojawiające się np. z powodu niedoskonałości systemu. Zespół Takahashiego badał pojedyncze kryształy molekularnego magnesu. Magnesy takie są bardzo czyste, co eliminuje dekoherencję zewnętrzną, uczeni mogli się zatem skupić na obliczaniu dekoherencji wewnętrznej. Uczeni wykorzystali silne pole magnetyczne do obniżenia wpływu czynników dekoherencji. Po raz pierwszy byliśmy w stanie dokładnie przewidzieć i kontrolować wszystkie czynniki dekoherencji w złożonym systemie - w tym przypadku była do duża molekuła magnetyczna - mówi Phil Stamp z University of British Columbia. To znacząco zwiększyło siłę sygnału kubitu, co z kolei spowodowało, że jego wykrycie stało się znacznie łatwiejsze - stwierdził Takahashi. Eksperymenty wykazały, że możliwe jest utrzymanie idealnych warunków dla kubitu przez około 500 mikrosekund. To bardzo długo, dlatego też uczeni mówią o przełomie w badaniach nad komputerami kwantowymi.
  10. Prace austriackich naukowców mogą przyczynić się do powstania nowatorskiej architektury komputerów kwantowych. Zespół Rainera Blatta z Uniwersytetu w Inssbrucku zaprezentował kwantową antenę, która pozwala na wymianę kwantowej informacji pomiędzy dwiema oddzielonymi od siebie komórkami pamięci umieszczonymi na jednym układzie. To właśnie w Innsbrucku stworzono przed sześciu laty pierwszy kwantowy bajt, złożony z ośmiu splątanych kubitów umieszczonych w elektromagnetycznej pułapce. Jednak, by zbudować praktyczny komputer kwantowy, który przeprowadza obliczenia, potrzebujemy większej liczby kwantowych bitów - stwierdził profesor Blatt, który wraz ze swoim zespołem był twórcą kwantowego bajta. W takich pułapkach nie możemy przechowywać dużej liczby jonów i jednocześnie ich kontrolować - dodał. Dlatego też potrzebne są małe kwantowe rejestry, które będą ze sobą połączone. Austriacy wykorzystali teoretyczne prace Ignacio Ciraca i Petera Zollera. W oddalonych od siebie o 54 mikrometrów pułapkach uwięzili jony i stworzyli anteny przekazujące sygnały. Cząsteczki oscylują jak elektrony w polu anteny telewizyjnej i tworzą pole elektromagnetyczne. Jeśli jedna antena jest dostrojona do drugiej, końcówka odbiorcza przejmuje sygnały z końcówki nadawczej i dochodzi do sprzężenia - wyjaśnia uczony. Wymiana energii, która ma miejsce może służyć jako podstawa do obliczeń w komputerze kwantowym. Profesor Blatt mówi, że zastosowano bardzo prostą architekturę. W dwóch małych pułapkach uwięziono jony wapnia. Gdy do elektrod pułapek podłączono napięcie, można było zsynchronizować oscylacje jonów, co doprowadziło do sprzężenia i wymiany energii. To jednocześnie pierwsza w historii demonstracja sprzężenia dwóch mechanicznych oscylacji na poziomie kwantowym. Co więcej okazało się, że im więcej jonów w każdej pułapce, tym silniejsze sprzężenie. Dodatkowe jony działają jak antena i pozwalają na zwiększenie odległości oraz prędkości transmisji - mówi Blatt. Nowa technika daje szansę na rozprzestrzenianie splątania. Jednocześnie pozwala na manipulowanie pojedynczymi komórkami - mówi. Jego zdaniem komputery kwantowe mogą bazować na układach scalonych zawierających liczne pułapki, w których będą znajdowały się jony komunikujące się ze sobą dzięki sprzężeniu elektromagnetycznemu.
  11. Komputery kwantowe - przyszłość informatyki, która brzmi bardziej niesamowicie, niż technologie z filmów science-fiction. Na drodze do ich realizacji zrobiono kolejny krok - użyto lasera do schłodzenia cząsteczek. Kwantowe komputery mają działać szybciej dzięki wykorzystaniu kwantowych bitów informacji, czyli kubitów. W tej roli uczeni obsadzali w swoich eksperymentach albo atomy, albo „sztuczne atomy". Czym jest sztuczny atom? To grupa wielu atomów, zachowująca się na poziomie kwantowym jak pojedynczy atom. I jedno, i drugie rozwiązanie ma wady: splątane atomy nie komunikują się ze sobą wystarczająco silnie na potrzeby obliczeń, sztuczne atomy spisują się tu doskonale, ale z powodu swojej masy sprawiają inny problem: zbyt łatwo poddają się zakłóceniom ze świata zewnętrznego. Czy nie da się znaleźć innego rozwiązania? Narzuca się wykorzystanie cząsteczek chemicznych, ale z różnych powodów również się to dotąd nie sprawdzało. Jeden z tych problemów właśnie rozwiązali naukowcy z Yale University: David DeMille, Edward Shuman i John Barry. Jeśli chcemy stworzyć kwantowy komputer, potrzebujemy możliwości manipulowania jego kubitami, a to jest trudne ponieważ każda manipulacja zakłóca ich stan kwantowy. Ponadto cząsteczki bez przerwy poruszają się, wibrują i obracają. Jak wiadomo, ruch cząsteczek to inaczej temperatura, jeśli chcemy cząsteczkę uciszyć, musimy obniżyć jej temperaturę blisko zera absolutnego, czyli -273,15 °C. Jak można schłodzić pojedynczą cząsteczkę? Udało się to zrobić z wykorzystaniem lasera. Wielu może zdziwić, w jaki sposób laser, kojarzony raczej z wysoką temperaturą można wykorzystać do chłodzenia? Promień lasera to najprościej mówiąc: strumień fotonów, które trafiając w cząsteczkę, poruszają nią. Jeśli cząsteczkę umieścimy pomiędzy dwoma przeciwległymi promieniami, to ograniczymy jej ruchy i przytrzymamy. A mniej ruchu to niższa temperatura. Chłodzenie laserem wykorzystywano już do pojedynczych atomów, ale nie stosowano wcześniej tej metody do cząsteczek, ponieważ mają one nieregularne kształty i zachowują się nieprzewidywalnie. Dlatego osiągnięcie zespołu DeMille'a jest takim sukcesem. Schłodzili oni niemal do zera absolutnego cząsteczkę monofluorku strontu, ale zamierzają ją rozwinąć i zastosować również do cząsteczek innych związków. To rewolucja - mówią autorzy. Technika znajdzie zastosowanie nie tylko przy konstruowaniu kwantowych komputerów, ale również do wielu innych eksperymentów. Jednym z nich jest uzyskanie efektu tunelowania kwantowego, ale przyda się również do precyzyjnych pomiarów struktury molekuł, czy wynajdywania nowych, nieznanych dotąd cząsteczek.
  12. Uczeni z University of Bristol - Noah Linden, Sandu Popescu i Paul Skrzypczyk - zaproponowali stworzenie najmniejszej lodówki, składającej się zaledwie z kilku cząsteczek i zdolnej do osiągnięcia temperatury bliskiej zeru absolutnemu. Praca naukowców jest czysto teoretyczna, a jej olbrzymią zaletą jest fakt, że ich lodówka nie wymaga skomplikowanych zewnętrznych systemów. Dotychczas tworzone miniaturowe lodówki wykorzystywały np. lasery. Wspomniana lodówka składa się z trzech kubitów i wykorzystuje fakt istnienia splątania kwantowego. Jeden z kubitów należy umieścić w bardzo gorącej kąpieli, a drugi w kąpieli bliskiej temperaturze pokojowej. Chłodzony będzie trzeci kubit. Gdy pierwszy kubit pobiera energię z kąpieli, wpływa na drugi kubit "zachęcając go" do pobierania energii z trzeciego, schładzając go w ten sposób. Z obliczeń wynika, że im cieplejsza kąpiel, w której umieszczony zostaje pierwszy kubit, tym większe możliwości chłodzące drugiego kubitu. Co więcej, tak długo jak kąpiel pierwszego kubitu pozostaje gorąca, system działa, a więc trzeci kubit ciągle jest chłodzony. Na tym się jednak propozycje uczonych z Bristolu nie kończą. Wymyślili oni również najmniejszą lodówkę świata. Twierdzą, że identyczny mechanizm, wykorzystany w przypadku trzech kubitów można też zastosować do pojedynczego kutritu. To odpowiednik tritu, który może przyjmować nie jeden z dwóch (jak bit czy kubit), ale jeden z trzech stanów. Jak zauważył fizyk Nicolas Gisin z uniwersytetu w Genewie, naukowcy z Bristolu w interesujący sposób połączyli termodynamikę i naukę o kwantowym przechowywaniu informacji. W przyszłości prace Lindena, Popescu i Skrzypczyka mogą przydać się regulacji tempa reakcji pomiędzy proteinami w komórkach czy też do chłodzenia elementów kwantowych komputerów. Rodzi się również pytanie, czy tego typu miniaturowe lodówki istnieją w naturze.
  13. Po raz pierwszy w historii udało się stworzyć efekt kwantowy w świecie, który może dojrzeć ludzkie oko. Naukowcy z University of California, Santa Barbara, wywołali interakcję pomiędzy kubitem a rezonatorem piezoelektrycznym wielkości 50 mikrometrów. W artykule opublikowanym w piśmie Nature, doktorant Aaron O'Connell oraz profesorowie John Martinis i Andrew Cleland, opisują, w jaki sposób schłodzili rezonator aż osiągnął on stan spoczynkowy (czyli przestał niemal całkowicie się poruszać) i użyli pojedynczego kwanta energii, by wywołać w nim wibracje. To ważny dowód na prawdziwość teorii kwantowej oraz znaczący krok w badaniach nad urządzeniami nanomechanicznymi - stwierdził Cleland. Uczeni zaprojektowali rezonator, który działa podobnie do rezonatorów w telefonach komórkowych. Pracuje on jednak przy wyższych częstotliwościach. Połączyli go następnie z urządzeniem służącym do obliczeń kwantowych - nadprzewodzącym kubitem. Całość schłodzili do temperatury bliskiej zeru absolutnemu. Następnie udowodnili, że rezonator zachowuje się tak, jak przewidują zasady mechaniki kwantowej. Byli w stanie stworzyć pojedynczy foton i obserwowali, jak dochodzi do wymiany energii pomiędzy kubitem a rezonatorem. Podczas tej wymiany były one ze sobą kwantowo splątane, co oznacza, że pomiar dokonywany na kubicie prowadził do zmian wibracji rezonatora. Podczas kolejnych eksperymentów uczeni wprowadzili rezonator w superpozycję, a więc stan, który reprezentował jednocześnie dwa stany, odpowiedniki 0 i 1. To energetyczny odpowiednik sytuacji, w której przedmiot znajdowałby się jednocześnie w dwóch róznych miejscach. Następnie dowiedli, że rezonator nadal zachowuje się zgodnie z prawami mechaniki kwantowej, a nie klasycznej.
  14. Przeprowadzono testy pierwszego uniwersalnego, programowalnego komputera kwantowego. Odbyły się one w warunkach laboratoryjnych i ujawniły sporo problemów, które muszą zostać rozwiązane, zanim tego typu komputer pojawi się poza laboratorium. Podczas testów prowadzonych przez zespół Davida Hanneke użyto urządzenia skonstruowanego przez amerykański Narodowy Instytut Standardów i Technologii (NIST). Maszyna wykonuje obliczenia na dwóch kubitach (kwantowych bitach). Obliczenia kwantowe były wykonywane już wcześniej, jednak dotychczas udawało się je przeprowadzać tylko dla pewnych specyficznych algorytmów. Teraz amerykańscy naukowcy pokazali, w jaki sposób wykonywać każdy rodzaj kwantowych obliczeń za pomocą tego samego urządzenia. Jego sercem jest pokryta złotem płytka aluminium. Umieszczono na niej elektromagnetyczną pułapkę o średnicy 200 nanometrów, w której uwięziono dwa jony magnezu i dwa berylu. Magnez działa jak rodzaj "zamrażarki", eliminując niepożądane wibracje i utrzymując stabilność systemu jonów. Całość uzupełniały lasery, w których świetle zakodowano kwantowe bramki logiczne. Seria impulsów z zakodowanymi bramkami trafia w jony, a wyniki są odczytywane przez inny laser. Spośród nieskończonej liczby operacji, które można przeprowadzić na dwóch kubitach, wybrano 160 przypadkowych, by sprawdzić uniwersalny charakter komputera. Podczas każdej z operacji oba jony berylu były ostrzeliwane impulsami lasera, w których zakodowano 31 różnych bramek logicznych. Każdy ze 160 programów został uruchomiony 900 razy. Uzyskane wyniki porównano z teoretycznymi wyliczeniami i okazało się, że maszyna pracuje tak, jak to przewidziano. Stwierdzono, że każda bramka logiczna pracuje z ponad 90-procentową dokładnością, jednak po ich połączeniu system osiągnął dokładność około 79%. Działo się tak dlatego, że istnieją niewielkie różnice w intensywności impulsów z różnymi zakodowanymi bramkami. Ponadto impulsy muszą być rozdzielane, odbijane i przechodzą wiele innych operacji, przez co wprowadzane są kolejne błędy. Mimo osiągnięcia dobrych rezultatów, system musi być znacznie poprawiony. Naukowcy z NIST mówią, że musi on osiągnąć dokładność rzędu 99,99% zanim trafi do komputerów. By tego dokonać należy poprawić stabilność laserów i zmniejszyć liczbę błędów wynikających z interakcji światła z komponentami optycznymi.
  15. NEC, Japońska Agencja Nauki i Technologii (JST) oraz Instytut Badań Fizycznych i Chemicznych (RIKEN) po raz pierwszy w historii zademonstrowały układ, który jest w stanie kontrolować splątanie pomiędzy kubitami, czyli kwantowymi bitami. Powstała więc technologia, która umożliwi stworzenie działających w praktyce komputerów kwantowych. Środowisko naukowe od dawna czekało na takie odkrycie. Do zbudowania kwantowego komputera nieodzowne jest bowiem: kontrolowanie stanu pojedynczego kubitu, kontrolowanie stanu dwóch splątanych kubitów, możliwość splątania i "rozplątania” kubitów. NEC, JST i RIKEN już wcześniej uzyskały nie tylko stabilny kubit, ale również pierwszą bramkę logiczną składającą się z dwóch kubitów. Logicznym następstwem ich prac było więc ostatnie osiągnięcie – kontrolowane splątanie kubitów. Aby to osiągnąć, wykorzystano trzeci kubit, który działa jak nieliniowy transformator, zdolny do włączania i wyłączania oddziaływania magnetycznego pomiędzy dwoma kubitami. Kontrolę włączania i wyłączania można sprawować za pomocą mikrofal. Co ważne, operacje splątywania udało się przeprowadzić tak, że czas życia kubitu nie został skrócony. Działanie komputera kwantowego: Najmniejszą cząstką informacji wykorzystywaną w komputerach jest bit. Jest on reprezentowany przez 0 lub 1. We współczesnych maszynach informacja, czyli ciąg bitów, przekazywana jest dzięki przepływowi elektronów. Tranzystory w procesorach posiadają przełączniki, które mogą zostać ustawione w pozycji „0” (niższe napięcie) lub „1” (wyższe napięcie). Tak więc za pomocą na przykład trzech bitów możemy stworzyć 8 różnych kombinacji: 1-1-1, 0-1-1, 1-0-1, 1-1-0, 0-0-0, 1-0-0, 0-1-0 oraz 0-0-1. Jednak w danej chwili w tych trzech bitach można zapisać tylko jedną z ośmiu kombinacji. Komputery kwantowe mają bazować na zjawisku z mechaniki kwantowej, która przewiduje, że ta sama cząsteczka może jednocześnie znajdować się w różnych miejscach, czyli jednocześnie przyjmować obie pozycje 0 i 1. Tak więc trzy kwantowe bity, zwany qbitami, mogą jednocześnie przechowywać wszystkie osiem kombinacji i wykonać na nich operacje. Z tego wynika, że trzybitowy komputer kwantowy będzie ośmiokrotnie bardziej wydajny, niż obecnie stosowane komputery. Obecnie coraz bardziej powszechnie stosowane są komputery 64-bitowe. A kwantowy komputer operujący jednocześnie na 64 bitach byłby nawet około 18 000 000 000 000 000 000 razy szybszy od współcześnie wykorzystywanej maszyny.
×
×
  • Dodaj nową pozycję...