Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'ATP' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 6 wyników

  1. Od kilkudziesięciu lat uważa się, że nieorganiczne azotany są szkodliwe dla zdrowia. Tymczasem zespół ze szwedzkiego Karolinska Institutet dowodzi, że azotany poprawiają funkcjonowanie mitochondriów komórkowych. Podczas swoich najnowszych eksperymentów profesor Eddie Weitzberg i jego zespół podawali przez trzy dni zdrowym ochotnikom taką ilość azotanów, jaką znajdziemy w 200-300 gramach szpinaku czy sałaty. Po tym czasie badani wsiadali na stacjonarny rower i byli poddawani próbom. Uczeni analizowali próbki ich mięśni i porównywali z wynikami osób, którym podawano placebo. Okazało się, że u osób spożywających azotany, mitochondria pracowały bardziej wydajnie, zużywały podczas wysiłku mniej tlenu, a jednocześnie produkowały więcej bogatego w energię ATP (adenozynotrifosforan) na każdą zużytą molekułę. Mitochondria odgrywają kluczową rolę w metabolizmie komórkowym. Poprawa ich pracy prawdopodobnie niesie ze sobą wiele korzyści dla ciała i wyjaśnia pozytywne skutki działania warzyw - mówi profesor Weitzberg. Wraz ze współautorem badań, profesorem Jonem Lundbergiem, opublikowali ich wyniki w piśmie Cell Metabolism. Są one szczególnie interesujące dla osób uprawiających sporty wytrzymałościowe. Pamiętać jednak należy, że azotany prawdopodobnie przyczyniają się również do dysfunkcji mitochondriów, cukrzycy i chorób sercowo-naczyniowych.
  2. KopalniaWiedzy.pl

    Opisali sen

    Doktor James Krueger z Washington State University specjalizuje się w mechanizmach biochemicznego regulowania snu. Uczony dokonał właśnie jednego z najważniejszych odkryć w swojej karierze, a jego prace pomogą setkom milionom osób na całym świecie. W samych tylko Stanach Zjednoczonych na różne formy bezsenności cierpi 50-70 milionów osób. Odkrycie Kruegera umożliwi nie tylko opracowanie nowych metod walki z bezsennością, ale daje nadzieje na powstanie wielu terapii ratujących uszkodzony mózg. Problemy związane ze zmęczeniem i bezsennością przekładają się też na gotówkę. Naukowcy szacują, że w USA utrata produktywności związana z przemęczeniem kosztuje firmy około 150 miliardów dolarów, a wypadki, w których biorą udział senni zmęczeni kierowcy to strata dalszych 48 miliardów USD rocznie. Od dawna wiadomo, że aktywność mózgu powiązana jest ze snem, ale dotychczas nie było wiadomo, jak ten związek wygląda. Krueger i prowadzony przez niego zespół jako pierwsi opisali mechanizm, który wiąże aktywność mózgu ze snem. Nie od dzisiaj wiadomo, że jakość snu jest związana z tym, co robimy w ciągu dnia. Nikt dotychczas nie zadał sobie jednak pytania o szczegóły. Naukowcy prowadzili badania, z których dowiadywali się, że od momentu obudzenia się w mózgu gromadzą się substancje regulujące sen. Tajemnicą pozostawało, co inicjalizuje gromadzenie się tych substancji. Grupa Kruegera opisała w Journal of Applied Psychology w jaki sposób ATP (adenozyno trójfosforan) jest uwalniany przez aktywne komórki mózgu, by doprowadzić w końcu do snu. ATP wiąże się z receptorem odpowiedzialnym za przetwarzanie i uwalnianie cytokin, niewielkich protein regulujących sen. Dzięki znalezieniu i opisaniu tego mechanizmu uczeni odkryli sposób, w jaki mózg pamięta o własnej aktywności i uruchamia mechanizmy przenoszące go od stanu czuwania do stanu snu. Odkrycia Kruegera dotyczą wielu aspektów aktywności mózgu. Wiadomo na przykład, że uczenie się i zapamiętywanie jest związane ze zmianą połączeń pomiędzy komórkami. Najnowsze badania wykazały, że ATP odgrywa znaczącą rolę w tych zmianach. Prace zespołu z Washington State University bardzo szybko znajdą praktyczne zastosowania. Dzięki nim powstaną np. skuteczne pigułki nasenne, gdyż wiadomo teraz, że powinny one wiązać się z receptorami ATP. Ponadto zaburzenia snu można teraz postrzegać jako przejaw pobudzenia jednych części mózgu, podczas gdy inne są uśpione. Odkrycie można będzie wykorzystać w technikach obrazowania, gdyż związany z ATP przepływ krwi pozwoli na kojarzenie go ze stanami czuwania i snu. Niewykluczone też, że można będzie opracować metody wpływania na poszczególne obszary mózgu tak, by wykonywały one konkretne zadania, dzięki czemu zmniejszy się zmęczenie, gdyż kiedy jedne części mózgu będą spały, inne przejmą wykonywane przez nie zadania. To z kolei rodzi nadzieję dla osób po udarach, gdyż niewykluczone, że możliwe będzie wymuszenie na nieuszkodzonych obszarach mózgu przejęcie większej ilości zadań wykonywanych wcześniej przez obszary, które ucierpiały podczas udaru. W końcu, specjaliści spekulują, że odkrycie pozwoli na znaczące rozszerzenie zakresu badań, które można wykonać na hodowanych w laboratoriach komórkach mózgu. A to z kolei przyczyniłoby się do znacznego przyspieszenia badań nad mózgiem.
  3. Na początkowych etapach snu znacznie wzrastają zapasy energetyczne w postaci ATP (adenozynotrójfosforanu) w 4 rejonach mózgu aktywnych podczas czuwania. Może to oznaczać, że organizm uzupełnia wtedy nakłady zużyte w ciągu dnia (Journal of Neuroscience). Wszyscy wiedzą, że sen działa regenerująco, ale zgromadzono niewiele dowodów związanych z zachodzącymi podczas nocnego odpoczynku procesami. Doktorzy Radhika Basheer i Robert McCarley z Boston VA Healthcare System i Harvardzkiej Szkoły Medycznej uważają, że kluczem do "mocy" regeneracyjnych snu jest właśnie odnowienie zapasów energetycznych mózgu. Ku naszemu zaskoczeniu nie było współczesnych studiów dotyczących energii mózgu, w których wykorzystywano by czułe metody pomiaru – podkreśla Basheer. Amerykanie badali poziom ATP, głównego nośnika energii chemicznej używanej w metabolizmie komórki, u szczurów. Zauważyli, że w fazie NREM (wolnych ruchów gałek ocznych) podwyższał się on w 4 obszarach aktywnych podczas czuwania. Towarzyszyło temu ogólne zmniejszenie aktywności mózgu. Gdy gryzonie nie spały, poziom adenozynotrifosforanu pozostawał stały. Jeśli naukowcy poszturchiwali szczury, nie pozwalając im zasnąć przez 3 lub 6 godz. od zwykłej pory udania się na spoczynek, wzrost stężenia ATP się nie pojawiał. Powiększenie zapasów energetycznych prawdopodobnie zasila procesy regeneracyjne, które nie działają w ciągu dnia, jako że neurony pochłaniają dużo paliwa nawet do samego podtrzymania stanu czuwania. Naukowcy komentujący wyniki badań zespołu doktor Basheer wskazują na konieczność opisania mechanizmu/źródła napływu ATP: czy jest to wynik obniżenia aktywności neuronów na czas snu, czy też w grę wchodzą raczej komórkowe szlaki sygnałowe.
  4. Zagadka powstania życia to zagadka niczym jajko czy kura? Co było najpierw replikacja czy metabolizm? Jedno potrzebuje i wynika z drugiego. Naukowcy z brytyjskiego Uniwersytetu Leeds sądzą, że odpowiedzią jest trzeci element - energia - a wczesne życie mogło czerpać ją z prostych cząstek przypominających działaniem baterie. Istnieje wiele, często wzajemnie sprzecznych, teorii na temat powstania życia na Ziemi. Żadna jednak nie potrafi przekonująco wyjaśnić jak materia nieożywiona stała się Życiem. Każda żywa komórka wymaga dostarczania energii, tę zapewnia metabolizm. Energię w żywym organizmie przenoszą szczególne cząsteczki, z których najbardziej znaną jest ATP (adenozynotrifosforan). Ciało człowieka zawiera około 250 gramów tej substancji, to ilość energii porównywalna z baterią paluszkiem. Jest ona jednak w ciągłym użyciu w komórkach ciała, uczestnicząc w regeneracji i oddychaniu komórkowym. Te są sterowane przez enzymy. Tu jednak pojawia się problem, co było pierwsze. Nie można stworzyć ATP bez enzymów, nie można stworzyć enzymów bez ATP. Może jednak pierwotnie energia była dostarczana w inny, znacznie prostszy sposób? Zdaniem dra Terry'ego Kee właśnie tak mogło być, a kluczem są proste związki zwane pirofosforynami, które chemicznie funkcjonują bardzo podobnie do ATP - również przenoszą energię. Jednak nie potrzebują do tego enzymów. Byłyby to więc swojego rodzaju akumulatory energii. Zarówno ATP, jak i pirofosforyny swoje energetyczne właściwości zawdzięczają jednemu pierwiastkowi - fosforowi. On także tworzy szkielet DNA i jest niezastąpiony w strukturze ścian komórkowych, jego rola dla życia jest więc nieoceniona. Jego powszechność i niezastąpioność sprawia, że pomysł dra Kee wydaje się prawdopodobny. Kluczowa rola fosforu w powstaniu życia czyni intrygującą inną zagadkę - skąd odpowiednia ilość wzięła się w atmosferze wczesnej Ziemi. Jedna z teorii mówi, że został przyniesiony w licznych meteorytach bombardujących jej powierzchnię - jest bowiem często znajdowany w minerałach pochodzenia kosmicznego. Kwaśne środowisko wulkaniczne młodej Ziemi mogło sprzyjać powstawaniu właśnie pirofosforynów. Ale to już zagadka geologiczna. Badania będą kontynuowane we współpracy z NASA, która zainteresowała się pomysłem.
  5. Podając leki immunosupresyjne pacjentom po przeszczepach, medycy stąpają po cienkiej linie. Z jednej stronie muszą osłabić układ odpornościowy na tyle, by organizm nie odrzucił nowego organu, z drugiej – nie mogą zaaplikować za wysokich dawek, by człowiek nie stał się zupełnie bezbronny i podatny na ataki mikroorganizmów. Badacze z Loyola University Medical Center opracowali nowy rodzaj badania krwi, które pomoże zachować niezbędną równowagę. Bazuje ono na ocenie poziomu energetycznego limfocytów. Amerykanie zaobserwowali bowiem, że u osób z wysokoenergetycznymi limfocytami nie dochodzi do rozwoju zakażeń. Pacjenci z niskoenergetycznymi limfocytami zapadali zaś na zapalenia płuc, dróg moczowych, skóry, miewali też opryszczkę. W sobotę (31 maja) dr Biljana Pavlovic-Surjancev przedstawiła wyniki badań zespołu na dorocznym Amerykańskim Kongresie Transplantologicznym. Do tej pory lekarze monitorowali stan układu odpornościowego, licząc komórki odpornościowe w próbce. Nowy test demonstruje ich aktywność, oceniając natężenie uwalniania cząsteczek adenozynotrifosforanu (ATP). Im więcej ATP, akumulatora energii, tym bardziej aktywna jest dana komórka. Zespół przeanalizował 37 próbek, które pobrano od 26 pacjentów po przeszczepach serca. Piętnastu chorych z infekcjami miało niższy poziom ATP od pozostałych 11 osób. Stwierdzono u nich również mniejszą liczbę komórek odpornościowych. W ramach niewielkiego studium zauważyliśmy, że infekcja jest związana z mniejszą aktywnością komórek układu odpornościowego. Potrzeba dalszych badań, by stwierdzić, czy test może pomóc w wykryciu osób z grupy ryzyka zakażeń, zanim jeszcze wystąpią.
  6. My, ludzie, możemy mieć więcej wspólnego z bakterią Escherichia coli, niż nam się wydaje. Amerykańscy naukowcy z Berkeley zademonstrowali bowiem, że replikacja DNA jest uruchamiana w ten sam sposób, bez względu na to, czy badanym organizmem jest bakteria właściwa, archeowiec czy tzw. jądrowiec (archeowce są organizmami jednokomórkowymi; kiedyś uważano, że są starsze od bakterii, ale okazało się, iż ewoluowały one równolegle; jądrowce, nazywane inaczej eukariontami, to organizmy wielokomórkowe). Badacze zidentyfikowali tę samą działającą strukturę zarówno w próbkach eukariotycznych (pochodzących od muszki owocowej), jak i bakteryjnych (pobranych od E. coli). Opisali ją jako spiralną strukturę, należącą do większej rodziny białek AAA+. Wcześniejsze badania wykazały obecność białek AAA+ w replikacji archeowców. Naukowcy wysnuli więc wniosek, że takie rozwiązanie powstało w toku ewolucji bardzo dawno temu, zanim jeszcze powstały trzy równoległe domeny: 1) bakterie (Bacteria), 2) archeowce (Archea) oraz 3) jądrowce (Eucarya). Eva Nogales, biofizyk biorąca udział w eksperymentach z muszkami owocowymi, podkreśla, że zdolność komórki do wiernego replikowania DNA w określonym czasie jest niezbędna dla przeżycia. Pomimo dziesięcioleci badania, strukturalne i molekularne podstawy inicjacji kopiowania DNA oraz stopień ewolucyjnego "zakonserwowania" tych mechanizmów były źle definiowane i gorąco nad nimi debatowano. Biochemik i biolog strukturalny James Berger był zaangażowany w oba badania. Jego zespół odkrył, że gdy białko DnaA zwiąże się z ATP (adenozynotrójfosforanem), wymusza to na białkach AAA+ zmianę kształtu (z pierścieniowego na prawoskrętną spiralę). Helisa DNA okręca się wokół spirali i ulega deformacji. W ten sposób rozpoczyna się proces rozdzielania DNA na dwie oddzielne nici. W badaniu muszek owocowych naukowcy odkryli ten sam mechanizm. Mimo że od pewnego czasu było wiadomo, że u eukariontów białka ORC (ang. origin recognition complex) inicjują replikację, niewiele umiano powiedzieć o budowie samego inicjatora. Obecnie, dzięki wykorzystaniu mikroskopu elektronowego, zaobserwowano, że po połączeniu z ATP kompleks białek ORC tworzy helisę, bardzo podobną do tej odkrytej w studium E. coli. Mimo że nie zaobserwowano okręcania się DNA wokół ORC, podobieństwa w budowie, które można bez trudu zauważyć, sugerują duże podobieństwa mechaniczne tych dwóch procesów. Specjalizacja w zakresie replikacji DNA zaszła wiele lat temu — konkluduje Nogales. Przez miliony lat do zasadniczego mechanizmu ewolucja dodała tylko ozdobniki. Wyniki obu badań zostaną opublikowane w sierpniu w Nature Structural and Molecular Biology.
×
×
  • Dodaj nową pozycję...